题目内容
(本题满分15分)已知圆N:
和抛物线C:
,圆的切线
与抛物线C交于不同的两点A,B,
(1)当直线
的斜率为1时,求线段AB的长;
(2)设点M和点N关于直线
对称,问是否存在直线
使得
?若存在,求出直线
的方程;若不存在,请说明理由.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232023360925148.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202335920752.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202335936520.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202335951260.png)
(1)当直线
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202335951260.png)
(2)设点M和点N关于直线
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202336029397.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202335951260.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202336061588.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202335951260.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232023360925148.png)
解:因为圆N:
,
所以圆心N为(-2,0),半径
, ………………… 1分
设
,
,
(1)当直线
的斜率为1时,设
的方程为
即![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202336201593.png)
因为直线
是圆N的切线,所以
,解得
或
(舍)
此时直线
的方程为
, ………………… 3分
由
消去
得
,
所以
,
,
, ………………… 4分
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232023363881043.png)
所以弦长
…………………6分
(2)①设直线
的方程为
即
(
)
因为直线
是圆N的切线,所以
,
得
………① ……………… 8分
由
消去
得
,
所以
即
且
,
,
. ………………… 9分
因为点M和点N关于直线
对称,所以点M为![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202336669468.png)
所以
,
,
因为
,所以![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202336731601.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202336747316.png)
+ ![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202336794533.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202336809557.png)
…… 10分
将A,B在直线
上代入化简得
……… 11分
代入
,
得
化简得
………② ………… 12分
①+②得![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202336934853.png)
即
,解得
或
当
时,代入①解得
,满足条件
且
,
此时直线
的方程为
;
当
时,代入①整理得
,无解. …………… 13分
② 当直线
的斜率不存在时,
因为直线
是圆N的切线,所以
的方程为
,
则得
,
,
即![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202337246838.png)
由①得:![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202336731601.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202337277453.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202336794533.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202336809557.png)
=![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232023373091274.png)
当直线
的斜率不存在时
不成立. ……………… 14分
综上所述,存在满足条件的直线
,其方程为
……………… 15分
另解:
(2)设直线
的方程为
即
(
必存在)
因为直线
是圆N的切线,所以
,
得
………① ……………… 8分
由
消去
得
,
所以
即
………………… 9分
,
. ………………… 10分
因为点M和点N关于直线
对称,所以点M为![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202336669468.png)
所以
,
,
因为
,所以![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202336731601.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202336747316.png)
+ ![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202336794533.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202336809557.png)
…… 11分
将A,B在直线
上代入化简得
……… 12分
代入
,
得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232023380731191.png)
化简得
………② ………… 13分
①+②得![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202338135831.png)
即
,解得
或
…… 14分
当
时,代入①解得
,满足条件
;
当
时,代入①整理得
,无解.
综上所述,存在满足条件的直线
,其方程为
……………… 15分
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202335920752.png)
所以圆心N为(-2,0),半径
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202336107439.png)
设
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202336123601.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202336139623.png)
(1)当直线
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202335951260.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202335951260.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202336185518.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202336201593.png)
因为直线
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202335951260.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202336217723.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202336232427.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202336263418.png)
此时直线
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202335951260.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202336295472.png)
由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202336310864.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202336326263.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202336341617.png)
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202336341378.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202336357543.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202336373496.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232023363881043.png)
所以弦长
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232023364041194.png)
(2)①设直线
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202335951260.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202336451604.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202336466665.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202336482392.png)
因为直线
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202335951260.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202336513937.png)
得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202336529797.png)
由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232023365441006.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202336326263.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202336575799.png)
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202336591737.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202336607594.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202336482392.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202336622672.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202336638756.png)
因为点M和点N关于直线
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202336029397.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202336669468.png)
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202336685856.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202336700888.png)
因为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202336061588.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202336731601.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202336747316.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202336778353.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202336794533.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202336809557.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202336825275.png)
将A,B在直线
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202336841604.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232023368561427.png)
代入
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202336622672.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202336638756.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232023369031357.png)
化简得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202336919819.png)
①+②得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202336934853.png)
即
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202336950791.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202336965430.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202336981516.png)
当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202336965430.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202337028351.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202336607594.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202336482392.png)
此时直线
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202337075261.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202337090504.png)
当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202336981516.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202337121646.png)
② 当直线
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202337075261.png)
因为直线
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202337075261.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202337075261.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202337184491.png)
则得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202337199780.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202337215529.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232023372311116.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202337246838.png)
由①得:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202336731601.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202337277453.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202336794533.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202336809557.png)
=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232023373091274.png)
当直线
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202337075261.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202336061588.png)
综上所述,存在满足条件的直线
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202337075261.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202337090504.png)
另解:
(2)设直线
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202337075261.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202337636585.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202337652622.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202337667343.png)
因为直线
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202337075261.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202337699856.png)
得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202337699769.png)
由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232023377141000.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202337730281.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202337745739.png)
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202337761772.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202337777651.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202337792650.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202337808582.png)
因为点M和点N关于直线
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202336029397.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202336669468.png)
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202336685856.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202336700888.png)
因为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202336061588.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202336731601.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202336747316.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202336778353.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202336794533.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202336809557.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202336825275.png)
将A,B在直线
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202337636585.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232023380111404.png)
代入
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202337792650.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202337808582.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232023380731191.png)
化简得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202338120670.png)
①+②得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202338135831.png)
即
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202338151819.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202338167497.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202338182525.png)
当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202338167497.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202338213563.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202337777651.png)
当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202338182525.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202338260668.png)
综上所述,存在满足条件的直线
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202337075261.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202337090504.png)
略
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目