题目内容

8.若正方体ABCD-A1B1C1D1中,E,F分别为AB,CC1的中点,则异面直线EF和A1C1所成角的大小是30°.

分析 由题意画出图形,取AA1中点G,连接FG,可得异面直线EF和A1C1所成角即为∠EFG,然后设出正方体的棱长,通过求解直角三角形求出△EFG的三边长,再利用余弦定理求得答案.

解答 解:如图,

取AA1中点G,连接FG,EG,
则FG∥A1C1
异面直线EF和A1C1所成角即为∠EFG.
设正方体的棱长为2,则$FG={A}_{1}{C}_{1}=2\sqrt{2}$,
GE=$\sqrt{2}$,$EF=\sqrt{E{B}^{2}+B{C}^{2}+C{F}^{2}}=\sqrt{{1}^{2}+{2}^{2}+{1}^{2}}=\sqrt{6}$.
在△EFG中,cos∠EFG=$\frac{E{F}^{2}+G{F}^{2}-E{G}^{2}}{2•EF•EG}=\frac{(\sqrt{6})^{2}+(2\sqrt{2})^{2}-(\sqrt{2})^{2}}{2×\sqrt{6}×2\sqrt{2}}$=$\frac{\sqrt{3}}{2}$.
∴∠EFG=30°.
即异面直线EF和A1C1所成角的大小是30°.
故答案为:30°.

点评 本题考查异面直线及其所成的角,考查空间点、线、面的位置关系及学生的空间想象能力、求异面直线角的能力.在立体几何中找平行线是解决问题的一个重要技巧,这个技巧就是通过三角形的中位线找平行线,如果试题的已知中涉及到多个中点,则找中点是出现平行线的关键技巧,是中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网