题目内容
15.如图,在直角梯形ABCD中,AD∥BC,∠BAD=$\frac{π}{2}$,AB=BC=1,AD=2,E是AD的中点,O是AC与BE的交点,将ABE沿BE折起到A1BE的位置,如图2.(Ⅰ)证明:CD⊥平面A1OC;
(Ⅱ)若平面A1BE⊥平面BCDE,求平面A1BC与平面A1CD夹角的余弦值.
分析 (Ⅰ)根据线面垂直的判定定理即可证明:CD⊥平面A1OC;
(Ⅱ)若平面A1BE⊥平面BCDE,建立空间坐标系,利用向量法即可求平面A1BC与平面A1CD夹角的余弦值.
解答 证明:(Ⅰ)在图1中,∵AB=BC=1,AD=2,E是AD的中点,∠BAD=$\frac{π}{2}$,
∴BE⊥AC,
即在图2中,BE⊥OA1,BE⊥OC,
则BE⊥平面A1OC;
∵CD∥BE,
∴CD⊥平面A1OC;
(Ⅱ)若平面A1BE⊥平面BCDE,
由(Ⅰ)知BE⊥OA1,BE⊥OC,
∴∠A1OC为二面角A1-BE-C的平面角,
∴∠A1OC=$\frac{π}{2}$,
如图,建立空间坐标系,
∵A1B=A1E=BC=ED=1.BC∥ED
∴B($\frac{\sqrt{2}}{2}$,0,0),E(-$\frac{\sqrt{2}}{2}$,0,0),A1(0,0,$\frac{\sqrt{2}}{2}$),C(0,$\frac{\sqrt{2}}{2}$,0),
$\overrightarrow{BC}$=(-$\frac{\sqrt{2}}{2}$,$\frac{\sqrt{2}}{2}$,0),$\overrightarrow{{A}_{1}C}$=(0,$\frac{\sqrt{2}}{2}$,-$\frac{\sqrt{2}}{2}$),
$\overrightarrow{CD}=\overrightarrow{BE}=(-\sqrt{2},0,0)$
设平面A1BC的法向量为$\overrightarrow{m}$=(x,y,z),平面A1CD的法向量为$\overrightarrow{n}$=(a,b,c),
则$\left\{\begin{array}{l}{\overrightarrow{m}•\overrightarrow{BC}=0}\\{\overrightarrow{m}•\overrightarrow{{A}_{1}C}=0}\end{array}\right.$得$\left\{\begin{array}{l}{-x+y=0}\\{y-z=0}\end{array}\right.$,令x=1,则y=1,z=1,即$\overrightarrow{m}$=(1,1,1),
由$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{{A}_{1}C}=0}\\{\overrightarrow{n}•\overrightarrow{CD}=0}\end{array}\right.$得$\left\{\begin{array}{l}{a=0}\\{b-c=0}\end{array}\right.$,
取$\overrightarrow{n}$=(0,1,1),
则cos<$\overrightarrow{m},\overrightarrow{n}$>=$\frac{\overrightarrow{m}•\overrightarrow{n}}{|\overrightarrow{m}||\overrightarrow{n}|}$=$\frac{2}{\sqrt{3}×\sqrt{2}}$=$\frac{\sqrt{6}}{3}$,
∴平面A1BC与平面A1CD夹角的余弦值为$\frac{\sqrt{6}}{3}$.
点评 本题主要考查空间直线和平面垂直的判定以及二面角的求解,建立坐标系利用向量法是解决空间角的常用方法.
A. | 14斛 | B. | 22斛 | C. | 36斛 | D. | 66斛 |
A. | 2 | B. | 4 | C. | 10 | D. | 28 |
A. | $(-\frac{\sqrt{3}}{3},\frac{\sqrt{3}}{3})$ | B. | $(-\frac{\sqrt{3}}{6},\frac{\sqrt{3}}{6})$ | C. | $(-\frac{2\sqrt{2}}{3},\frac{2\sqrt{2}}{3})$ | D. | $(-\frac{2\sqrt{3}}{3},\frac{2\sqrt{3}}{3})$ |
A. | 134石 | B. | 169石 | C. | 338石 | D. | 1365石 |