题目内容
【题目】如图,在四棱锥P-ABCD中,底面ABCD为正方形,平面PAD⊥平面ABCD,点M在线段PPD//平面MAC,PA=PD=,AB=4.
(I)求证:M为PB的中点;
(II)求二面角B-PD-A的大小;
(III)求直线MC与平面BDP所成角的正弦值.
【答案】(1)见解析(2)(3)
【解析】试题分析:(Ⅰ)设交点为,连接,因为线面平行,即平面,根据性质定理,可知线线平行,即,再由为的中点,可知为的中点;(Ⅱ)因为平面平面, ,所以取的中点为原点建立空间直角坐标系,根据向量法先求两平面的法向量, ,再根据公式,求二面角的大小;(Ⅲ)根据(Ⅱ)的结论,直接求即可.
试题解析:解:(I)设交点为,连接.
因为平面,平面平面,所以.
因为是正方形,所以为的中点,所以为的中点.
(II)取的中点,连接, .
因为,所以.
又因为平面平面,且平面,所以平面.
因为平面,所以.
因为是正方形,所以.
如图建立空间直角坐标系,则, , ,
, .
设平面的法向量为,则,即.
令,则, .于是.
平面的法向量为,所以.
由题知二面角为锐角,所以它的大小为.
(III)由题意知, , .
设直线与平面所成角为,则.
所以直线与平面所成角的正弦值为.
练习册系列答案
相关题目
【题目】某批次的某种灯泡个,对其寿命进行追踪调查,将结果列成频率分布表如下,根据寿命将灯泡分成优等品、正品和次品三个等级,其中寿命大于或等于天的灯泡是优等品,寿命小于天的灯泡是次品,其余的灯泡是正品.
寿命 (天) | 频数 | 频率 |
合计 |
(1)根据频率分布表中的数据,写出的值;
(2)某人从这个灯泡中随机地购买了个,求此灯泡恰好不是次品的概率;
(3)某人从这批灯泡中随机地购买了个,如果这个灯泡的等级情況恰好与按三个等级分层抽样所得的结果相同,求的最小值.