题目内容
已知函数f(x)=ax2+bx+1(a,b为实数),x∈R,F(x)=![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240319068231189.png)
(1)若f(-1)=0,且函数f(x) ≥0的对任意x属于一切实数成立,求F(x)的表达式;
(2)在 (1)的条件下,当x∈[-2,2]时,g(x)=f(x)-kx是单调函数,求实数k的取值范围;
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240319068231189.png)
(1)若f(-1)=0,且函数f(x) ≥0的对任意x属于一切实数成立,求F(x)的表达式;
(2)在 (1)的条件下,当x∈[-2,2]时,g(x)=f(x)-kx是单调函数,求实数k的取值范围;
(1)
, (2)
,![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031906870448.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240319068391254.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031906854434.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031906870448.png)
试题分析:(1)解析式的求法,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031906886500.png)
(2)由(1)已知
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031906901463.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031906917466.png)
试题解析:(1)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031906948828.png)
又
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031906964433.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031906901463.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031906995544.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240319070101460.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031907010861.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240319070261284.png)
(2)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031907042715.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031907057664.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031907073712.png)
对称轴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031907088582.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031907104594.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031907104603.png)
即
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031906854434.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031906870448.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031906917466.png)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目