题目内容

在数列{an}中,a1=1,对任意n∈N*,都有
a
 
n+1
=
a
 
n
2
a
 
n
+1
b
 
n
=
1
a
 
n

(Ⅰ)证明:数列{bn}为等差数列,并求出an
(Ⅱ)设数列{an•an+1}的前n项和为Tn,求证:
T
 
n
1
2
考点:数列递推式,数列的求和
专题:等差数列与等比数列
分析:(Ⅰ)由已知得bn+1-bn=
1
an+1
-
1
an
=
2an+1
an
-
1
an
=2,由此能证明数列{bn}是首项为1,公差为2的等差数列,从而求出an=
1
2n-1

(Ⅱ)由an•an+1=
1
2n-1
1
2n+1
=
1
2
(
1
2n-1
-
1
2n+1
)
,利用裂项求和法能证明
T
 
n
1
2
解答: (Ⅰ)证明:∵在数列{an}中,a1=1,
对任意n∈N*,都有
a
 
n+1
=
a
 
n
2
a
 
n
+1
b
 
n
=
1
a
 
n

bn+1-bn=
1
an+1
-
1
an
=
2an+1
an
-
1
an
=2,
b1=
1
a1
=1,
∴数列{bn}是首项为1,公差为2的等差数列,
∴bn=2n-1,
1
an
=2n-1,
∴an=
1
2n-1

(Ⅱ)解:∵an•an+1=
1
2n-1
1
2n+1
=
1
2
(
1
2n-1
-
1
2n+1
)

∴Tn=
1
2
(1-
1
3
+
1
3
-
1
5
+…+
1
2n-1
-
1
2n+1

=
1
2
(1-
1
2n+1

=
1
2
-
1
2(2n+1)
1
2

T
 
n
1
2
点评:本题考查等差数列的证明,考查数列的通项公式的求法,考查不等式的证明,解题时要认真审题,注意裂项求和法的合理运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网