题目内容
在数列{an}中,a1=1,对任意n∈N*,都有
=
,
=
.
(Ⅰ)证明:数列{bn}为等差数列,并求出an;
(Ⅱ)设数列{an•an+1}的前n项和为Tn,求证:
<
.
a | n+1 |
| ||
2
|
b | n |
1 | ||
|
(Ⅰ)证明:数列{bn}为等差数列,并求出an;
(Ⅱ)设数列{an•an+1}的前n项和为Tn,求证:
T | n |
1 |
2 |
考点:数列递推式,数列的求和
专题:等差数列与等比数列
分析:(Ⅰ)由已知得bn+1-bn=
-
=
-
=2,由此能证明数列{bn}是首项为1,公差为2的等差数列,从而求出an=
.
(Ⅱ)由an•an+1=
•
=
(
-
),利用裂项求和法能证明
<
.
1 |
an+1 |
1 |
an |
2an+1 |
an |
1 |
an |
1 |
2n-1 |
(Ⅱ)由an•an+1=
1 |
2n-1 |
1 |
2n+1 |
1 |
2 |
1 |
2n-1 |
1 |
2n+1 |
T | n |
1 |
2 |
解答:
(Ⅰ)证明:∵在数列{an}中,a1=1,
对任意n∈N*,都有
=
,
=
.
bn+1-bn=
-
=
-
=2,
又b1=
=1,
∴数列{bn}是首项为1,公差为2的等差数列,
∴bn=2n-1,
∴
=2n-1,
∴an=
.
(Ⅱ)解:∵an•an+1=
•
=
(
-
),
∴Tn=
(1-
+
-
+…+
-
)
=
(1-
)
=
-
<
,
∴
<
.
对任意n∈N*,都有
a | n+1 |
| ||
2
|
b | n |
1 | ||
|
bn+1-bn=
1 |
an+1 |
1 |
an |
2an+1 |
an |
1 |
an |
又b1=
1 |
a1 |
∴数列{bn}是首项为1,公差为2的等差数列,
∴bn=2n-1,
∴
1 |
an |
∴an=
1 |
2n-1 |
(Ⅱ)解:∵an•an+1=
1 |
2n-1 |
1 |
2n+1 |
1 |
2 |
1 |
2n-1 |
1 |
2n+1 |
∴Tn=
1 |
2 |
1 |
3 |
1 |
3 |
1 |
5 |
1 |
2n-1 |
1 |
2n+1 |
=
1 |
2 |
1 |
2n+1 |
=
1 |
2 |
1 |
2(2n+1) |
1 |
2 |
∴
T | n |
1 |
2 |
点评:本题考查等差数列的证明,考查数列的通项公式的求法,考查不等式的证明,解题时要认真审题,注意裂项求和法的合理运用.
练习册系列答案
相关题目
已知x,y满足约束条件
,则z=2x-y的最大值为( )
|
A、-3 | B、1 | C、13 | D、15 |
若直线(1+a)x+y-1=0与圆x2+y2+4x=0相切,则a的值为( )
A、1或-1 | ||||
B、
| ||||
C、1 | ||||
D、-
|