题目内容
已知函数f(x)=x2-(1+2a)x+aln x(a为常数).
(1)当a=-1时,求曲线y=f(x)在x=1处切线的方程;
(2)当a>0时,讨论函数y=f(x)在区间(0,1)上的单调性,并写出相应的单调区间.
(1)y=2x.(2)①当0<a<时,f(x)的单调增区间是(0,a)和,单调减区间是,②当a=时,f(x)在区间(0,1)上是单调增函数.③当<a<1时,f(x)的单调增区间是和(a,1),单调减区间是,④当a≥1时,f(x)的单调增区间是,单调减区间是
【解析】(1)当a=-1时,f(x)=x2+x-ln x,则f′(x)=2x+1-,(2分)
所以f(1)=2,且f′(1)=2.
所以曲线y=f(x)在x=1处的切线的方程为:y-2=2(x-1),
即:y=2x.(6分)
(2)由题意得f′(x)=2x-(1+2a)+= (x>0),
由f′(x)=0,得x1=,x2=a,(8分)
①当0<a<时,由f′(x)>0,又知x>0得0<x<a或<x<1
由f′(x)<0,又知x>0,得a<x<,
所以函数f(x)的单调增区间是(0,a)和,单调减区间是,(10分)
②当a=时,f′(x)=≥0,且仅当x=时,f′(x)=0,?
所以函数f(x)在区间(0,1)上是单调增函数.(11分)
③当<a<1时,由f′(x)>0,又知x>0得0<x<或a<x<1,
由f′(x)<0,又知x>0,得<x<a,
所以函数f(x)的单调增区间是和(a,1),单调减区间是,(13分)
④当a≥1时,由f′(x)>0,又知x>0得0<x<,
由f′(x)<0,又知x>0,得<x<1,
所以函数f(x)的单调增区间是,单调减区间是.(16分)
练习册系列答案
相关题目