题目内容
【题目】如图,在三棱锥中,为等腰直角三角形,为等边三角形,其中O为BC中点,且.
(1)求证:平面平面PBC;
(2)若且平面EBC,其中E为AP上的点,求CE与平面ABC所成角的正弦值.
【答案】(1)证明见解析;(2).
【解析】
(1)由题意可得,,利用线面垂直的判定定理证出平面PAO,从而得证.
(2)作PH垂直于平面ABC,垂足为H,由(1)知,点H在直线AO上,以A为原点,AC为x轴,AB为y轴,以过A点与平面ABC垂直的直线为z轴建立空间直角坐标系,求出以及平面ABC的一个法向量,利用空间向量的数量积即可求解.
(1) 证明:由题可知,,,且,
故平面PAO,又平面PBC,因此平面平面PBC.
(2)作PH垂直于平面ABC,垂足为H,由(1)知,点H在直线AO上.
如图,以A为原点,AC为x轴,AB为y轴,以过A点与平面ABC垂直的直线为z轴建立空间直角坐标系,可得如下坐标:,,,,
设P点坐标为,利用,,可得.从.
因为E为AP上的点,故存在实数,使得,点E坐标可设为,
由平面EBC知,,得,
从而,取平面ABC的一个法向量.
设CE与平面ABC所成角的为,.
故CE与平面ABC所成角的正弦值为.
【题目】设三棱锥的每个顶点都在球的球面上,是面积为的等边三角形,,,且平面平面.
(1)确定的位置(需要说明理由),并证明:平面平面.
(2)与侧面平行的平面与棱,,分别交于,,,求四面体的体积的最大值.
【题目】某电视台举行文艺比赛,并通过网络对比赛进行直播.比赛现场有5名专家评委给每位参赛选手评分,场外观众可以通过网络给每位参赛选手评分.每位选手的最终得分由专家评分和观众评分确定.某选手参与比赛后,现场专家评分情况如表;场外有数万名观众参与评分,将评分按照[7,8),[8,9),[9,10]分组,绘成频率分布直方图如图:
专家 | A | B | C | D | E |
评分 | 9.6 | 9.5 | 9.6 | 8.9 | 9.7 |
(1)求a的值,并用频率估计概率,估计某场外观众评分不小于9的概率;
(2)从5名专家中随机选取3人,X表示评分不小于9分的人数;从场外观众中随机选取3人,用频率估计概率,Y表示评分不小于9分的人数;试求E(X)与E(Y)的值;
(3)考虑以下两种方案来确定该选手的最终得分:方案一:用所有专家与观众的评分的平均数作为该选手的最终得分,方案二:分别计算专家评分的平均数和观众评分的平均数,用作为该选手最终得分.请直接写出与的大小关系.