题目内容
已知是递增的等差数列,,是方程的根。
(I)求的通项公式;
(II)求数列的前项和.
(I)求的通项公式;
(II)求数列的前项和.
(1);(2).
试题分析:(1)根据题中所给一元二次方程,可运用因式分解的方法求出它的两根为2,3,即可得出等差数列中的,运用等差数列的定义求出公差为d,则,故,从而.即可求出通项公式;(2)由第(1)小题中已求出通项,易求出:,写出它的前n项的形式:,观察此式特征,发现它是一个差比数列,故可采用错位相减的方法进行数列求和,即两边同乘,即:,将两式相减可得:,所以.
试题解析:(1)方程的两根为2,3,由题意得.
设数列的公差为d,则,故,从而.
所以的通项公式为.
(2)设的前n项和为,由(1)知,则
,
.
两式相减得
所以.
练习册系列答案
相关题目