ÌâÄ¿ÄÚÈÝ
1£®ÒÑÖªÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄÀëÐÄÂÊΪ$\frac{{\sqrt{6}}}{3}$£¬³¤Ö᳤Ϊ2$\sqrt{6}$£®£¨¢ñ£©ÇóÍÖÔ²CµÄ±ê×¼·½³Ì£»
£¨¢ò£©ÉèFΪÍÖÔ²CµÄÓÒ½¹µã£¬TΪֱÏßx=t£¨t¡ÊR£¬t¡Ù2£©ÉÏ×Ý×ø±ê²»Îª0µÄÈÎÒâÒ»µã£¬¹ýF×÷TFµÄ´¹Ïß½»ÍÖÔ²CÓÚµãP£¬Q£®
£¨¢¡£©ÈôOTƽ·ÖÏ߶ÎPQ£¨ÆäÖÐOΪ×ø±êԵ㣩£¬ÇótµÄÖµ£»
£¨¢¢£©ÔÚ£¨¢¡£©µÄÌõ¼þÏ£¬µ±$\frac{|TF|}{|PQ|}$×îСʱ£¬ÇóµãTµÄ×ø±ê£®
·ÖÎö £¨1£©ÓÉÓÚ$\frac{c}{a}$=$\frac{{\sqrt{6}}}{3}$£¬2a=2$\sqrt{6}$£¬ÓÖa2=b2+c2£®½â³ö¼´¿É£®
£¨2£©£¨¢¡£©ÓÉ£¨1£©¿ÉµÃ£¬FµãµÄ×ø±êÊÇ£¨2£¬0£©£®ÉèÖ±ÏßPQµÄ·½³ÌΪx=my+2£¬ÓëÍÖÔ²·½³ÌÁªÁ¢»¯Îª£¨m2+3£©y2+4my-2=0£¬¡÷£¾0£®ÉèP£¨x1£¬y1£©£¬Q£¨x2£¬y2£©£¬ÉèMΪPQµÄÖе㣬ÀûÓøùÓëϵÊýµÄ¹Øϵ¿ÉµÃ£ºMµãµÄ×ø±ê£®ÓÉÓÚTF¡ÍPQ£¬¿ÉµÃÖ±ÏßFTµÄбÂÊΪ-m£¬Æä·½³ÌΪy=-m£¨x-2£©£®¿ÉµÃµãTµÄ×ø±ê£¬½«MµãµÄ×ø±ê´úÈë½â³ö¼´¿É£®
£¨¢¢£©ÓÉ£¨¢¡£©ÖªTΪֱÏßx=3ÉÏÈÎÒâÒ»µã¿ÉµÃ£¬µãTµãµÄ×ø±êΪ£¨3£¬-m£©£®ÓÚÊÇ$|TF|=\sqrt{{m^2}+1}$£¬|PQ|=$\frac{{\sqrt{24}£¨{m^2}+1£©}}{{{m^2}+3}}$£®»¯¼ò$\frac{|TF|}{|PQ|}$ÀûÓûù±¾²»µÈʽµÄÐÔÖʼ´¿ÉµÃ³ö£®
½â´ð ½â£º£¨1£©¡ß$\frac{c}{a}$=$\frac{{\sqrt{6}}}{3}$£¬2a=2$\sqrt{6}$£¬ÓÖa2=b2+c2£®
½âµÃa2=6£¬b2=2£¬c=2£®
¡àÍÖÔ²CµÄ±ê×¼·½³ÌÊÇ$\frac{x^2}{6}+\frac{y^2}{2}=1$£®
£¨2£©£¨¢¡£©ÓÉ£¨1£©¿ÉµÃ£¬FµãµÄ×ø±êÊÇ£¨2£¬0£©£®
ÉèÖ±ÏßPQµÄ·½³ÌΪx=my+2£¬
ÁªÁ¢$\left\{\begin{array}{l}{x=my+2}\\{\frac{{x}^{2}}{6}+\frac{{y}^{2}}{2}=1}\end{array}\right.$
ÏûÈ¥x£¬µÃ£¨m2+3£©y2+4my-2=0£¬
ÆäÅбðʽ¡÷=16m2+8£¨m2+3£©£¾0£®
ÉèP£¨x1£¬y1£©£¬Q£¨x2£¬y2£©£¬Ôòy1+y2=$\frac{-4m}{m2+3}$£¬y1y2=$\frac{-2}{m2+3}$£®
ÓÚÊÇx1+x2=m£¨y1+y2£©+4=$\frac{12}{m2+3}$£®
ÉèMΪPQµÄÖе㣬ÔòMµãµÄ×ø±êΪ$£¨\frac{6}{{{m^2}+3}}£¬\frac{-2m}{{{m^2}+3}}£©$£®
¡ßTF¡ÍPQ£¬
¡àÖ±ÏßFTµÄбÂÊΪ-m£¬Æä·½³ÌΪy=-m£¨x-2£©£®
µ±x=tʱ£¬y=-m£¨t-2£©£¬
¡àµãTµÄ×ø±êΪ£¨t£¬-m£¨t-2£©£©£¬
´ËʱֱÏßOTµÄбÂÊΪ$\frac{{-m£¨{t-2}£©}}{t}$£¬Æä·½³ÌΪ$y=\frac{m£¨2-t£©}{t}x$£®
½«MµãµÄ×ø±êΪ$£¨\frac{6}{{{m^2}+3}}£¬\frac{-2m}{{{m^2}+3}}£©$´úÈ룬µÃ$\frac{-2m}{{{m^2}+3}}=\frac{m£¨2-t£©}{t}•\frac{6}{{{m^2}+3}}$£®
½âµÃt=3£®
£¨¢¢£©ÓÉ£¨¢¡£©ÖªTΪֱÏßx=3ÉÏÈÎÒâÒ»µã¿ÉµÃ£¬µãTµãµÄ×ø±êΪ£¨3£¬-m£©£®
ÓÚÊÇ$|TF|=\sqrt{{m^2}+1}$£¬|PQ|=$\frac{{\sqrt{24}£¨{m^2}+1£©}}{{{m^2}+3}}$£®
¡à$\frac{|TF|}{|PQ|}=\sqrt{{m^2}+1}•\frac{{{m^2}+3}}{{\sqrt{24}£¨{m^2}+1£©}}=\frac{1}{{\sqrt{24}}}•\sqrt{\frac{{{{£¨{m^2}+3£©}^2}}}{{{m^2}+1}}}$=$\frac{1}{{\sqrt{24}}}•\sqrt{\frac{{{{£¨{m^2}+3£©}^2}}}{{{m^2}+1}}}=\frac{1}{{\sqrt{24}}}•\sqrt{\frac{{{{£¨{m^2}+1£©}^2}+4£¨{m^2}+1£©+4}}{{{m^2}+1}}}$=$\frac{1}{{\sqrt{24}}}•\sqrt{{m^2}+1+\frac{4}{{{m^2}+1}}+4}$$¡Ý\frac{1}{{\sqrt{24}}}•\sqrt{2\sqrt{4}+4}=\frac{{\sqrt{3}}}{3}$£®
µ±ÇÒ½öµ±m2+1=$\frac{4}{m2+1}$£¬¼´m=¡À1ʱ£¬µÈºÅ³ÉÁ¢£¬´Ëʱ$\frac{|TF|}{|PQ|}$È¡µÃ×îСֵ$\frac{{\sqrt{3}}}{3}$£®
¹Êµ±$\frac{|TF|}{|PQ|}$×îСʱ£¬TµãµÄ×ø±êÊÇ£¨3£¬1£©»ò£¨3£¬-1£©£®
µãÆÀ ±¾Ì⿼²éÁËÍÖÔ²µÄ±ê×¼·½³Ì¼°ÆäÐÔÖÊ¡¢Ö±ÏßÓëÍÖÔ²ÏཻÎÊÌâת»¯Îª·½³ÌÁªÁ¢¿ÉµÃ¡÷£¾0¼°Æä¸ùÓëϵÊýµÄ¹Øϵ¡¢ÏÒ³¤¹«Ê½¡¢»ù±¾²»µÈʽµÄÐÔÖÊ¡¢Ï໥´¹Ö±µÄÖ±ÏßбÂÊÖ®¼äµÄ¹ØϵµÈ»ù´¡ÖªÊ¶Óë»ù±¾¼¼ÄÜ·½·¨£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÄÑÌ⣮