题目内容
【题目】已知正方体ABCD-A1B1C1D1的棱长为2,E为棱CC1的中点,点M在正方形BCC1B1内运动,且直线AM//平面A1DE,则动点M 的轨迹长度为( )
A. B. π C. 2 D.
【答案】D
【解析】
设平面DA1E与直线B1C1交于点F,连接AF、EF,则F为B1C1的中点.分别取B1B、BC的中点N、O,连接AN、ON、AO,可证出平面A1DE∥平面ANO,从而得到NO是平面BCC1B1内的直线.由此得到点M的轨迹被正方形BCC1B1截得的线段是线段ON.
解:设平面DA1E与直线B1C1交于点F,连接AF、EF,
则F为B1C1的中点.
分别取B1B、BC的中点N、O,连接AN、ON、AO,
则∵A1F∥AO,AN∥DE,A1F,DE平面A1DE,
AO,AN平面ANO,
∴A1F∥平面ANO.同理可得DE∥平面ANO,
∵A1F、DE是平面A1DE内的相交直线,
∴平面A1DE∥平面ANO,
所以NO∥平面A1DE,
∴直线NO平面A1DE,
∴M的轨迹被正方形BCC1B1截得的线段是线段NO.
∴M的轨迹被正方形BCC1B1截得的线段长NO.
故选:D.
练习册系列答案
相关题目