题目内容

(10分)在四棱锥P—ABCD中,底面ABCDa的正方形,PA⊥平面ABCD

PA=2AB
(1)求证:平面PAC⊥平面PBD
(2)求二面角B—PC—D的余弦值.
解:(Ⅰ)证明:∵PA⊥平面ABCD   ∴PA⊥BD
∵ABCD为正方形   ∴AC⊥BD
∴BD⊥平面PAC又BD在平面BPD内,
∴平面PAC⊥平面BPD      6分
(Ⅱ)解法一:在平面BCP内作BN⊥PC垂足为N,连DN,
∵Rt△PBC≌Rt△PDC,由BN⊥PC得DN⊥PC;
∴∠BND为二面角B—PC—D的平面角,
在△BND中,BN=DN=,BD=
∴cos∠BND =
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网