题目内容
15.6男4女站成一排,求满足下列条件的排法共有多少种?(只列式,不需计算结果)(1)任何2名女生都不相邻有多少种排法?
(2)男甲不在首位,男乙不在末位,有多少种排法?
(3)男生甲、乙、丙排序一定,有多少种排法?
(4)男甲在男乙的左边(不一定相邻)有多少种不同的排法?
分析 (1)任何两个女生都不得相邻,利用插空法,问题得以解决,
(2)男甲不在首位,男乙不在末位,利用间接法,故问题得以解决,
(3)男生甲、乙、丙顺序一定,利用定序法,问题得以解决.
(4)由于男甲要么在男乙的左边,要么在男乙的右边,故利用除法可得结论.
解答 解:(1)任何两个女生都不得相邻,利用插空法,故有A66A74种.
(2)男甲不在首位,男乙不在末位,利用间接法,故有A1010-2A99+A88种,
(3)男生甲、乙、丙顺序一定,利用定序法,$\frac{{A}_{10}^{10}}{{A}_{3}^{3}}$=A107种,
(4)由于男甲要么在男乙的左边,要么在男乙的右边,所以男甲在男乙的左边(不一定相邻)$\frac{1}{2}$A1010.
点评 本题考查排列、组合知识的运用,考查学生分析解决问题的能力,正确选用方法是关键.
练习册系列答案
相关题目
5.过曲线y=3x-x3上一点A(2,-2)的切线方程为( )
A. | y=-2 | B. | 9x+y+16=0 | C. | 9x+y-16=0 | D. | 9x+y-16=0或y=-2 |
6.在△ABC中,a、b、c分别是角A、B、C的对边,a=1,△ABC的面积为$\frac{\sqrt{3}}{2}$,f(x)=2sin(2x+$\frac{π}{6}$)+1,且f(B)=2,则$\frac{b}{sinB}$的值为( )
A. | 2$\sqrt{3}$ | B. | 2 | C. | 2$\sqrt{7}$ | D. | 4 |
10.若${A}_{n}^{3}$=12${C}_{n}^{2}$,则n=( )
A. | 8 | B. | 7 | C. | 6 | D. | 4 |
7.等差数列{an}的前n项和为Sn,S5=-5,S9=-45,则a4的值为( )
A. | -1 | B. | -2 | C. | -3 | D. | -4 |
4.甲乙两班进行数学考试,按照大于85分为优秀,85分以下为非优秀统计成绩后,得到下列联表.已知在100人中随机抽取1人为优秀的概率为$\frac{3}{10}$.
(1)请完成上面的列联表;
(2)根据列联表的数据,若按95%的可能性要求,能否认为“成绩与班级有关系”?
参考公式:k2=$\frac{{n(ad-bc{)^2}}}{(a+b)(c+d)(a+c)(b+d)}$.
优秀 | 非优秀 | 总计 | |
甲班 | 10 | ||
乙班 | 30 | ||
合计 | 100 |
P(k2≥k0) | 0.10 | 0.05 | 0.025 |
k0 | 2.706 | 3.841 | 5.024 |
参考公式:k2=$\frac{{n(ad-bc{)^2}}}{(a+b)(c+d)(a+c)(b+d)}$.