题目内容
设数列{an}的前n项的和Sn与an的关系是Sn=-an+1-
,n∈N*.
(1)求证:数列{2nan}为等差数列,并求数列{an}的通项;
(2)求数列{Sn}的前n项和Tn.
1 |
2n |
(1)求证:数列{2nan}为等差数列,并求数列{an}的通项;
(2)求数列{Sn}的前n项和Tn.
(1)当n=1时,s1=-a1+1-
⇒a1=
…(1分),
n≥2时,由Sn-Sn-1=-an+an-1+
,
得2nan-2n-1an-1=
,
∴数列{2nan}为等差数列,…(3分)
∴2nan=2×a1+(n-1)×
,an=
.…(6分)
(2)由(1)得Sn=1-
,
∴Tn=n-(
+
+…+
),①
Tn=
n-(
+
+…+
),②
①-②得
Tn=
n-(
+
+
+…+
-
)
=
n-
-
+
=
n-1+
+
.…(9分)
∴Tn=n-2+
.…(12分)
1 |
2 |
1 |
4 |
n≥2时,由Sn-Sn-1=-an+an-1+
1 |
2n |
得2nan-2n-1an-1=
1 |
2 |
∴数列{2nan}为等差数列,…(3分)
∴2nan=2×a1+(n-1)×
1 |
2 |
n |
2n+1 |
(2)由(1)得Sn=1-
n+2 |
2n+1 |
∴Tn=n-(
3 |
22 |
4 |
23 |
n+2 |
2n+1 |
1 |
2 |
1 |
2 |
3 |
23 |
4 |
24 |
n+2 |
2n+2 |
①-②得
1 |
2 |
1 |
2 |
3 |
4 |
1 |
23 |
1 |
24 |
1 |
2n+1 |
n+2 |
2n+2 |
=
1 |
2 |
3 |
4 |
| ||||
1-
|
n+2 |
2n+2 |
=
1 |
2 |
1 |
2n+1 |
2n+4 |
2n+1 |
∴Tn=n-2+
2n+5 |
2n |
练习册系列答案
相关题目