题目内容
【题目】在平面直角坐标系中,圆的参数方程为(为参数),在以原点为极点,轴的非负半轴为极轴建立的极坐标系中,直线的极坐标方程为.
(1)求圆的普通方程和直线的直角坐标方程;
(2)设直线与轴,轴分别交于,两点,点是圆上任一点,求面积的最大值.
【答案】(1),;(2).
【解析】
(1)直接消元得到圆的普通方程,首先将直线的极坐标方程化简,再利用公式将极坐标方程转化为直角坐标方程;
(2)首先求出直线与轴,轴的交点,设点的坐标为,表示出点到直线的距离,求出距离最值,再根据面积公式计算可得;
解:(1)由消去参数,得,
所以圆的普通方程为.
由,得,
所以直线的直角坐标方程为.
(2)直线与轴,轴的交点为,,
设点的坐标为,则点到直线的距离为
,
所以,又,
所以面积的最大值是.
练习册系列答案
相关题目