题目内容
【题目】已知函数.
(Ⅰ)当时,讨论函数的单调区间;
(Ⅱ)若对任意的和恒成立,求实数的取值范围.
【答案】(Ⅰ)见解析(Ⅱ)
【解析】
(Ⅰ)首先求得导函数,然后结合导函数的解析式分类讨论函数的单调性即可; (Ⅱ)将原问题进行等价转化为,,恒成立,然后构造新函数,结合函数的性质确定实数的取值范围即可.
解:(Ⅰ)当时,,
当时,在上恒成立,函数在上单调递减;
当时,由得:;由得:.
∴当时,函数的单调递减区间是,无单调递增区间:
当时,函数的单调递减区间是,函数的单调递增区间是.
(Ⅱ)对任意的和,恒成立等价于:
,,恒成立.
即,,恒成立.
令:,,,
则得,
由此可得:在区间上单调递减,在区间上单调递增,
∴当时,,即
又∵,
∴实数的取值范围是:.
练习册系列答案
相关题目