题目内容
【题目】在如图所示的四棱锥中,四边形是等腰梯形,,,平面,,.
(1)求证:平面;
(2)已知二面角的余弦值为,求直线与平面所成角的正弦值.
【答案】(1)证明见解析;(2).
【解析】
(1)由已知可得,结合,由直线与平面垂直的判定可得平面;
(2)由(1)知,,则,,两两互相垂直,以为坐标原点,分别以,,所在直线为,,轴建立空间直角坐标系,设,0,,由二面角的余弦值为求解,再由空间向量求解直线与平面所成角的正弦值.
(1)证明:因为四边形是等腰梯形,,,所以.又,所以,
因此,,
又,
且,,平面,
所以平面.
(2)取的中点,连接,,
由于,因此,
又平面,平面,所以.
由于,,平面,
所以平面,故,
所以为二面角的平面角.在等腰三角形中,由于,
因此,又,
因为,所以,所以
以为轴、为轴、为轴建立空间直角坐标系,则,,
,,
设平面的法向量为
所以,即,令,则,,
则平面的法向量,,
设直线与平面所成角为,则
练习册系列答案
相关题目
【题目】某家庭记录了未使用节水龙头30天的日用水量数据(单位:)和使用了节水龙头30天的日用水量数据,得到频数分布表如下:
(一)未使用节水龙头30天的日用水量频数分布表
日用水量 | |||||
频数 | 2 | 3 | 8 | 12 | 5 |
(二)使用了节水龙头30天的日用水量频数分布表
日用水量 | |||||
频数 | 2 | 5 | 11 | 6 | 6 |
(1)估计该家庭使用了节水龙头后,日用水量小于的概率;
(2)估计该家庭使用节水龙头后,平均每天能节省多少水?(同一组中的数据以这组数据所在区间中点的值作代表)