题目内容
【题目】在平面直角坐标系xOy中,已知曲线C的参数方程为(α为参数,直线l:y=kx(k>0),以O为极点,x轴正半轴为极轴建立极坐标系.
(Ⅰ)求曲线C的极坐标方程;
(Ⅱ)若直线l与曲线C交于A,B两点,求|OA||OB|的值.
【答案】(Ⅰ)ρ2-2ρcosθ-3=0(Ⅱ)3
【解析】
(Ⅰ)利用同角的三角函数关系式,把曲线C的参数方程化为普通方程,再利用
公式,化成极坐标方程;
(Ⅱ)把直线化成极坐标方程代入圆的极坐标方程中,根据一元二次方程的根与系数的关系和极径的几何意义求出。
解:(Ⅰ)由曲线C的参数方程消去参数α可得曲线C的普通方程为:(x-1)2+y2=4,即x2+y2-2x-3=0,化为极坐标方程为ρ2-2ρcosθ-3=0.
(Ⅱ)直线l的极坐标方程为θ=β(β∈(0,)),
将θ=β代入方程ρ2-2ρcosθ-3=0,得ρ2-2ρcosβ-3=0,∴ρ1ρ2=-3,
∴|OA||OB|=|ρ1ρ2|=3.
【题目】为了打好“精准扶贫攻坚战”某村扶贫书记打算带领该村农民种植新品种蔬菜,可选择的种植量有三种:大量种植,适量种植,少量种植.根据收集到的市场信息,得到该地区该品种蔬菜年销量频率分布直方图如图,然后,该扶贫书记同时调查了同类其他地区农民以往在各种情况下的平均收入如表1(表中收入单位:万元):
表1
销量 种植量 | 好 | 中 | 差 |
大量 | 8 | -4 | |
适量 | 9 | 7 | 0 |
少量 | 4 | 4 | 2 |
但表格中有一格数据被墨迹污损,好在当时调查的数据频数分布表还在,其中大量种植的100户农民在市场销量好的情况下收入情况如表2:
收入(万元) | 11 | 11.5 | 12 | 12.5 | 13 | 13.5 | 14 | 14.5 | 15 |
频数(户) | 5 | 10 | 15 | 10 | 15 | 20 | 10 | 10 | 5 |
(Ⅰ)根据题中所给数据,请估计在市场销量好的情况下,大量种植的农民每户的预期收益.(用以往平均收入来估计);
(Ⅱ)若该地区年销量在10千吨以下表示销量差,在10千吨至30千吨之间表示销量中,在30千吨以上表示销量好,试根据频率分布直方图计算销量分别为好、中、差的概率(以频率代替概率);
(Ⅲ)如果你是这位扶贫书记,请根据(Ⅰ)(Ⅱ),从农民预期收益的角度分析,你应该选择哪一种种植量.