题目内容
【题目】已知指数函数y=g(x)满足:g(2)=4,定义域为R的函数f(x)=是奇函数.
(1)确定y=g(x)的解析式;
(2)求m,n的值;
(3)若对任意的t∈R,不等式f(t2﹣2t)+f(2t2﹣k)<0恒成立,求实数k的取值范围.
【答案】解:(1)∵指数函数y=g(x)满足:g(2)=4,
∴g(x)=2x;
(2)由(1)知:f(x)=是奇函数.
因为f(x)是奇函数,所以f(0)=0,即,∴n=1;
∴f(x)=,又由f(1)=﹣f(﹣1)知
,∴m=2;
(3)由(2)知f(x)==-+,
易知f(x)在(﹣∞,+∞)上为减函数.
又因f(x)是奇函数,从而不等式:
f(t2﹣2t)+f(2t2﹣k)<0等价于f(t2﹣2t)<﹣f(2t2﹣k)=f(k﹣2t2),
因f(x)为减函数,由上式推得:t2﹣2t>k﹣2t2 ,
即对一切t∈R有:3t2﹣2t﹣k>0,
从而判别式△=4+12k<0,解得:k<-.
【解析】(1)根据指数函数y=g(x)满足:g(2)=4,即可求出y=g(x)的解析式;
(2)由题意知f(0)=0,f(1)=﹣f(﹣1),解方程组即可求出m,n的值;
(3)由已知易知函数f(x)在定义域f(x)在(﹣∞,+∞)上为减函数.我们可将f(t2﹣2t)+f(2t2﹣k)<0转化为一个关于实数t的不等式组,解不等式组,即可得到实数t的取值范围.
【考点精析】解答此题的关键在于理解奇偶性与单调性的综合的相关知识,掌握奇函数在关于原点对称的区间上有相同的单调性;偶函数在关于原点对称的区间上有相反的单调性.
练习册系列答案
相关题目