题目内容
【题目】数列{an}的各项均为正数,其前n项和为Sn , 已知 =1,且a1= ,则tanSn的取值集合是( )
A.{0, }
B.{0, , }
C.{0, ,﹣ }
D.{0, ,﹣ }
【答案】A
【解析】解:∵ =1,∴na =(n+1)a +anan+1 , ∴[nan+1﹣(n+1)an](an+1+an)=0,an , an+1>0. ∴nan+1﹣(n+1)an=0,即 .
∴ =…= = .
∴an= ×n.
∴Sn= .
∴tanSn=tan[ ],
n=3k∈N*时,tanSn= =0;
n=3k﹣1∈N*时,tanSn=tan =0;
n=3k﹣2∈N*时,tanSn=tan π= .
综上可得:tanSn的取值集合是{0, }.
故选:A.
【考点精析】认真审题,首先需要了解数列的前n项和(数列{an}的前n项和sn与通项an的关系).
练习册系列答案
相关题目
【题目】据统计,某地区植被覆盖面积公顷与当地气温下降的度数之间呈线性相关关系,对应数据如下:
公顷 | 20 | 40 | 60 | 80 |
3 | 4 | 4 | 5 |
请用最小二乘法求出y关于x的线性回归方程;
根据中所求线性回归方程,如果植被覆盖面积为300公顷,那么下降的气温大约是多少?
参考公式:线性回归方程;其中,.