题目内容
【题目】已知F1 , F2是双曲线C1: ﹣ =1(a>0,b>0)的左、右焦点,且F2是抛物线C2:y2=2px(p>0)的焦点,P是双曲线C1与抛物线C2在第一象限内的交点,线段PF2的中点为M,且|OM|= |F1F2|,其中O为坐标原点,则双曲线C1的离心率是( )
A.2+
B.1+
C.2+
D.1+
【答案】A
【解析】解:设点P(x0 , y0),F2(c,0),设P在抛物线准线的射影为A, 由双曲线定义可得|PF2|=|PF1|﹣2a,
由抛物线的定义可得|PA|=x0+c=2c﹣2a,∴x0=c﹣2a,
在直角△F1AP中,|F1A|2=8ac﹣4a2 ,
∴y02=8ac﹣4a2 ,
∴8ac﹣4a2=4c(c﹣2a),
∴c2﹣4ac+a2=0,
∴e2﹣4e+1=0,
∵e>1,
∴e=2+ ,
故选:A.
练习册系列答案
相关题目
【题目】2016年美国总统大选过后,有媒体从某公司的全体员工中随机抽取了200人,对他们的投票结果进行了统计(不考虑弃权等其他情况),发现支持希拉里的一共有95人,其中女员工55人,支持特朗普的男员工有60人.
(Ⅰ)根据已知条件完成下面的2×2列联表:据此材料,是否有95%的把握认为投票结果与性别有关?
支持希拉里 | 支持特朗普 | 合计 | |
男员工 | |||
女员工 | |||
合计 |
(Ⅱ)若从该公司的所有男员工中随机抽取3人,记其中支持特朗普的人数为X,求随机变量X的分布列和数学期望.(用相应的频率估计概率)
附:
P(K2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
K0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(参考公式:K2= ,其中n=a+b+c+d)