题目内容
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/2014082313304604173.gif)
(Ⅰ)求
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133046056459.gif)
(Ⅱ)过A、B两点分别作此抛物线的切线,两切线相交于N点.
求证:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133046072738.gif)
(Ⅲ)若p是不为1的正整数,当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133046087553.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133046119216.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133046119216.gif)
(Ⅰ)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133046134364.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133046150367.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133046165423.gif)
(Ⅱ)证明见解析
(Ⅲ)抛物线的方程:x2=4y.
(Ⅰ)由条件得M(0,-
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133046181238.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133046181238.gif)
y=kx+
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133046181238.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133046243201.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133046259201.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133046275203.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133046290305.gif)
则
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133046353427.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133046368413.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133046431570.gif)
由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133046446719.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133046462540.gif)
∴由韦达定理得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133046243201.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133046275203.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133046243201.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133046275203.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133046618216.gif)
从而有
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133046259201.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133046290305.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133046696566.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133046259201.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133046290305.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133046243201.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133046275203.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133046774129.gif)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133046134364.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133046150367.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133046165423.gif)
(Ⅱ)抛物线方程可化为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133046945470.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133046961426.gif)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133046977394.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133046992253.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133047008347.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133047226357.gif)
∴切线NA的方程为:y-
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133047242617.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133047257552.gif)
切线NB的方程为:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133047273570.gif)
由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133047289951.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133047320774.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133047351566.gif)
从而可知N点Q点的横坐标相同但纵坐标不同.
∴NQ∥OF.即
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133047351486.gif)
又由(Ⅰ)知
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133046243201.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133046275203.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133046243201.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133046275203.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133047491129.gif)
∴N(pk,-
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133046181238.gif)
而M(0,-
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133046181238.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133047569566.gif)
又
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133047616555.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133047647481.gif)
(Ⅲ)由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133047663565.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133047679601.gif)
∴4p
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133047491129.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133047491129.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133047491129.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133047491129.gif)
由于
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133047835342.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231330478501526.gif)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231330478661474.gif)
从而
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133047882437.gif)
又|
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133047835342.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133047913477.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133047928242.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133047944689.gif)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231330479601373.gif)
而
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133047991384.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133046119216.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133046119216.gif)
∴5
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133046119216.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133046119216.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133046119216.gif)
而p>0,∴1≤p≤2.
又p是不为1的正整数.
∴p=2.
故抛物线的方程:x2=4y. …………………………14分
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目