题目内容

【题目】(本小题满分12分)

已知函数,其中

)当,求曲线在点处的切线方程;

时,求函数的单调区间与极值.

【答案】

在区间内为增函数,在区间内为减函数.

函数处取得极大值,且

函数处取得极小值,且

【解析】)解:当时,

所以,曲线在点处的切线方程为

)解:

由于,以下分两种情况讨论.

(1)当时,令,得到.当变化时,的变化情况如下表:

0

0

极小值

极大值

所以在区间内为减函数,在区间内为增函数.

函数处取得极小值,且

函数处取得极大值,且

(2)当时,令,得到,当变化时,的变化情况如下表:

0

0

极大值

极小值

所以在区间内为增函数,在区间内为减函数.

函数处取得极大值,且

函数处取得极小值,且

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网