题目内容
【题目】设数列{an}满足a1=2,an+1-an=3·22n-1.
(1)求数列{an}的通项公式;
(2)令bn=nan,求数列{bn}的前n项和Sn.
【答案】(1)an=22n-1.(2)Sn= [(3n-1)22n+1+2]
【解析】
(1)利用累加法求出数列{an}的通项公式为an=22n-1.(2)利用错位相减法求数列{bn}的前n项和Sn.
(1)由已知,当n≥1时,an+1=[(an+1-an)+(an-an-1)+…+(a2-a1)]+a1=3(22n-1+22n-3+…+2)+2=22(n+1)-1.
而a1=2,符合上式,所以数列{an}的通项公式为an=22n-1.
(2)由bn=nan=n·22n-1知
Sn=1·2+2·23+3·25+…+n·22n-1,①
从而22·Sn=1·23+2·25+3·27+…+n·22n+1.②
①-②得(1-22)Sn=2+23+25+…+22n-1-n·22n+1,即Sn=[(3n-1)22n+1+2].
【题目】某企业生产一种产品,质量测试分为:指标不小于为一等品;指标不小于且小于为二等品;指标小于为三等品。其中每件一等品可盈利元,每件二等品可盈利元,每件三等品亏损元。现对学徒甲和正式工人乙生产的产品各件的检测结果统计如下:
测试指标 | ||||||
甲 | ||||||
乙 |
根据上表统计得到甲、乙生产产品等级的频率分别估计为他们生产产品等级的概率。求:
(1)乙生产一件产品,盈利不小于元的概率;
(2)若甲、乙一天生产产品分别为件和件,估计甲、乙两人一天共为企业创收多少元?
(3)从甲测试指标为与乙测试指标为共件产品中选取件,求两件产品的测试指标差的绝对值大于的概率.
【题目】某个产品有若干零部件构成,加工时需要经过7道工序,分别记为.其中,有些工序因为是制造不同的零部件,所以可以在几台机器上同时加工;有些工序因为是对同一个零部件进行处理,所以存在加工顺序关系,若加工工序必须要在工序完成后才能开工,则称为的紧前工序.现将各工序的加工次序及所需时间(单位:小时)列表如下:
工序 | |||||||
加工时间 | 3 | 4 | 2 | 2 | 2 | 1 | 5 |
紧前工序 | 无 | 无 |
现有两台性能相同的生产机器同时加工该产品,则完成该产品的最短加工时间是( )
(假定每道工序只能安排在一台机器上,且不能间断.)
A. 11个小时 B. 10个小时 C. 9个小时 D. 8个小时
【题目】某大学餐饮中心为了了解新生的饮食习惯,在某学院大一年级名学生中进行了抽样调查,发现喜欢甜品的占.这名学生中南方学生共人。南方学生中有人不喜欢甜品.
(1)完成下列列联表:
喜欢甜品 | 不喜欢甜品 | 合计 | |
南方学生 | |||
北方学生 | |||
合计 |
(2)根据表中数据,问是否有的把握认为“南方学生和北方学生在选用甜品的饮食习惯方面有差异”;
(3)已知在被调查的南方学生中有名数学系的学生,其中名不喜欢甜品;有名物理系的学生,其中名不喜欢甜品.现从这两个系的学生中,各随机抽取人,记抽出的人中不喜欢甜品的人数为,求的分布列和数学期望.
附:.
0.15 | 0.100 | 0.050 | 0.025 | 0.010 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 |