题目内容
【题目】在平面直角坐标系中,抛物线的焦点为,点是抛物线上一点,且.
(1)求的值;
(2)若为抛物线上异于的两点,且.记点到直线的距离分别为,求的值.
【答案】(1);(2).
【解析】分析:(1)利用抛物线的定义求p的值.(2)先求出a的值,再联立直线的方程和抛物线的方程得到韦达定理,再求|(y1+2) (y2+2)|的值.
详解:(1)因为点A(1,a) (a>0)是抛物线C上一点,且AF=2,
所以+1=2,所以p=2.
(2)由(1)得抛物线方程为y2=4x.
因为点A(1,a) (a>0)是抛物线C上一点,所以a=2.
设直线AM方程为x-1=m (y-2) (m≠0),M(x1,y1),N(x2,y2).
由消去x,得y2-4m y+8m-4=0,
即(y-2)( y-4m+2)=0,所以y1=4m-2.
因为AM⊥AN,所以-代m,得y2=--2,
所以d1d2=|(y1+2) (y2+2)|=|4m×(-)|=16.
练习册系列答案
相关题目
【题目】某个产品有若干零部件构成,加工时需要经过7道工序,分别记为.其中,有些工序因为是制造不同的零部件,所以可以在几台机器上同时加工;有些工序因为是对同一个零部件进行处理,所以存在加工顺序关系,若加工工序必须要在工序完成后才能开工,则称为的紧前工序.现将各工序的加工次序及所需时间(单位:小时)列表如下:
工序 | |||||||
加工时间 | 3 | 4 | 2 | 2 | 2 | 1 | 5 |
紧前工序 | 无 | 无 |
现有两台性能相同的生产机器同时加工该产品,则完成该产品的最短加工时间是( )
(假定每道工序只能安排在一台机器上,且不能间断.)
A. 11个小时 B. 10个小时 C. 9个小时 D. 8个小时