题目内容

【题目】二次函数y=ax2+bx+c(x∈R)的部分对应值如表:

x

﹣3

﹣2

﹣1

0

1

2

3

4

y

﹣6

0

4

6

6

4

0

﹣6

则一元二次不等式ax2+bx+c>0的解集是(
A.{x|x<﹣2,或x>3}
B.{x|x≤﹣2,或x≥3}
C.{x|﹣2<x<3}
D.{x|﹣2≤x≤3}

【答案】C
【解析】解:根据二次函数y=ax2+bx+c(x∈R)的部分对应值表知,

a<0,且x=﹣2时,y=0;

x=3时,y=0;

∴一元二次不等式ax2+bx+c>0的解集是{x|﹣2<x<3}.

故选:C.

【考点精析】认真审题,首先需要了解解一元二次不等式(求一元二次不等式解集的步骤:一化:化二次项前的系数为正数;二判:判断对应方程的根;三求:求对应方程的根;四画:画出对应函数的图象;五解集:根据图象写出不等式的解集;规律:当二次项系数为正时,小于取中间,大于取两边).

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网