题目内容

【题目】已知函数g(x)=aln x,f(x)=x3+x2+bx.
(1)若f(x)在区间[1,2]上不是单调函数,求实数b的范围;
(2)若对任意x∈[1,e],都有g(x)≥﹣x2+(a+2)x恒成立,求实数a的取值范围.

【答案】
(1)解:由f(x)=x3+x2+bx,得f′(x)=3x2+2x+b,

∵f(x)在区间[1,2]上不是单调函数,

∴f′(x)在[1,2]上最大值大于0,最小值小于0

f′(x)=3 +b﹣

∴﹣16<b<﹣5;


(2)解:由g(x)≥﹣x2+(a+2)x,得(x﹣lnx)a≤x2﹣2x.

∵x∈[1,e],∴lnx≤1≤x,且等号不能同时取,

∴lnx<x,即x﹣lnx>0,

∴a≤ 恒成立,即a≤( min

令t(x)= ,x∈[1,e],求导得,t′(x)=

当x∈[1,e]时,x﹣1≥0,lnx≤1,x+2﹣lnx>0,从而t′(x)≥0,

∴t(x)在[1,e]上为增函数,tmin(x)=t(1)=﹣1,

∴a≤﹣1.


【解析】(1)求出函数的导数,根据f′(x)在[1,2]上最大值大于0,最小值小于0,得到关于b的不等式组,解出即可;(2)由g(x)≥﹣x2+(a+2)x分离出参数a后,转化为求函数最值,利用导数可求最值.
【考点精析】通过灵活运用利用导数研究函数的单调性和函数的最大(小)值与导数,掌握一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减;求函数上的最大值与最小值的步骤:(1)求函数内的极值;(2)将函数的各极值与端点处的函数值比较,其中最大的是一个最大值,最小的是最小值即可以解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网