题目内容
【题目】某位同学在2015年5月进行社会实践活动,为了对白天平均气温与某奶茶店的某种饮料销量之间的关系进行分析研究,他分别记录了5月1日至5月5日的白天平均气温x(°C)与该奶茶店的这种饮料销量y(杯),得到如下数据:
日 期 | 5月1日 | 5月2日 | 5月3日 | 5月4日 | 5月5日 |
平均气温x(°C) | 9 | 10 | 12 | 11 | 8 |
销量y(杯) | 23 | 25 | 30 | 26 | 21 |
(1)若从这五组数据中随机抽出2组,求抽出的2组数据不是相邻2天数据的概率;
(2)请根据所给五组数据,求出y关于x的线性回归方程 = x+ .
(参考公式: = , = ﹣ )
【答案】
(1)解:设“选取的2组数据不是相邻2天数据”为事件A
所有基本事件(m,n)(其中m,n为5月份的日期数)有:
(1,2),(1,3),(1,4),(1,5),(2,3),
(2,4),(2,5),(3,4),(3,5),(4,5)共10种;
事件A包括的基本事件有
(1,3),(1,4),(1,5),(2,4),(2,5),(3,5)共6种;
所以P(A)= ;
(2)解:由数据,求得 = =10,
= =25;
= =2.1,
= ﹣ =4,
∴y关于x的线性回归方程为 =2.1x+4
【解析】(1)利用列举法求出“选取的2组数据不是相邻2天数据”的基本事件数,求出对应的概率即可;(2)根据题目中的数据,利用公式求出平均数 、 与回归系数 、 ,写出线性回归方程.
【题目】已知椭圆C: =1(a>b>0)的离心率为 ,且经过点A(0,﹣1).
(1)求椭圆C的标准方程;
(2)如果过点 的直线与椭圆交于M,N两点(M,N点与A点不重合),求证:△AMN为直角三角形.
【题目】二次函数y=ax2+bx+c(x∈R)的部分对应值如表:
x | ﹣3 | ﹣2 | ﹣1 | 0 | 1 | 2 | 3 | 4 |
y | ﹣6 | 0 | 4 | 6 | 6 | 4 | 0 | ﹣6 |
则一元二次不等式ax2+bx+c>0的解集是( )
A.{x|x<﹣2,或x>3}
B.{x|x≤﹣2,或x≥3}
C.{x|﹣2<x<3}
D.{x|﹣2≤x≤3}