题目内容
15.如果$\overrightarrow{a}$、$\overrightarrow{b}$是单位向量,其夹角为$\frac{π}{2}$,且$\overrightarrow{c}$=2$\overrightarrow{a}$+3$\overrightarrow{b}$,$\overrightarrow{d}$=k$\overrightarrow{a}$-4$\overrightarrow{b}$,$\overrightarrow{c}$⊥$\overrightarrow{d}$,则k=( )A. | 6 | B. | -6 | C. | 3 | D. | -3 |
分析 由$\overrightarrow{c}$⊥$\overrightarrow{d}$,借助于数量积为0展开即可求得答案.
解答 解:由$\overrightarrow{c}$⊥$\overrightarrow{d}$,得$\overrightarrow{c}•\overrightarrow{d}=(2\overrightarrow{a}+3\overrightarrow{b})•(k\overrightarrow{a}-4\overrightarrow{b})$=0,
即$2k|\overrightarrow{a}{|}^{2}-8\overrightarrow{a}•\overrightarrow{b}+3k\overrightarrow{a}•\overrightarrow{b}-12|\overrightarrow{b}{|}^{2}=0$,
∴2k-8cos$\frac{π}{2}$+3kcos$\frac{π}{2}$-12=0.
解得:k=6.
故选:A.
点评 本题考查平面向量的数量积运算,是基础的计算题.
练习册系列答案
相关题目
5.变量x、y满足条件$\left\{\begin{array}{l}x-y+1≤0\\ y≤1\\ x>-1\end{array}\right.$,则(x-2)2+y2的最小值为( )
A. | $\frac{{3\sqrt{2}}}{2}$ | B. | $\sqrt{5}$ | C. | 5 | D. | $\frac{9}{2}$ |
6.已知两个集合$A=\left\{{x∈R\left|{y=\sqrt{1-{x^2}}}\right.}\right\}$,$B=\left\{{x|\frac{x+1}{1-x}≥0}\right\}$则A∩B=( )
A. | A | B. | B | C. | {-1,1} | D. | ∅ |
20.某学习兴趣小组开展“学生语文成绩与英语成绩的关系”的课题研究,对该校高二年级800名学生上学期期末语文和英语成绩进行统计,按优秀和不优秀进行分类.记集合A={语文成绩优秀的学生},B={英语成绩优秀的学生}.如果用card(M)表示有限集合M中元素的个数.已知card(A∩B)=60,card(A∩CUB)=140,card(CUA∩B)=100,其中U表示800名学生组成的全集.
(Ⅰ)是否有99.9%的把握认为“该校学生的语文成绩与英语成绩优秀与否有关系”;
(Ⅱ)将上述调查所得的频率视为概率,从该校高二年级的学生成绩中,有放回地随机抽取3次,记所抽取的成绩中,语文英语两科成绩中至少有一科优秀的人数为x,求x的分布列和数学期望.
附:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
参考数据:
(Ⅰ)是否有99.9%的把握认为“该校学生的语文成绩与英语成绩优秀与否有关系”;
(Ⅱ)将上述调查所得的频率视为概率,从该校高二年级的学生成绩中,有放回地随机抽取3次,记所抽取的成绩中,语文英语两科成绩中至少有一科优秀的人数为x,求x的分布列和数学期望.
附:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
参考数据:
P(K2≥k0) | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 5.024 | 6.635 | 7.879 | 10.828 |