题目内容

【题目】已知△ABC中,角A、B、C所对的边分别为a,b,c,且 =
(1)求A
(2)求cosB+cosC的取值范围.

【答案】
(1)解:∵ =

∴由正弦定理可得: = ,可得:b2+c2﹣a2=﹣bc,

∴由余弦定理可得:cosA= = =﹣

∴由A∈(0,π),可得:A=


(2)解:∵A= ,可得:C= ﹣B,

∴cosB+cosC=cosB+cos( ﹣B)= cosB+ sinB= sin(B+ ),

∵B∈(0, ),可得:B+ ∈( ),

∴cosB+cosC= sin(B+ )∈( ]


【解析】(1)由正弦定理化简已知等式可得:b2+c2﹣a2=﹣bc,由余弦定理可求cosA,结合A∈(0,π),可得A的值.(2)由(1)得:C= ﹣B,利用三角函数恒等变换的应用化简可求cosB+cosC= sin(B+ ),由B∈(0, ),可得:B+ ∈( ),由正弦函数的图象和性质即可得解.
【考点精析】掌握正弦定理的定义和余弦定理的定义是解答本题的根本,需要知道正弦定理:;余弦定理:;;

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网