题目内容
【题目】已知△ABC中,角A、B、C所对的边分别为a,b,c,且 =
(1)求A
(2)求cosB+cosC的取值范围.
【答案】
(1)解:∵ = ,
∴由正弦定理可得: = ,可得:b2+c2﹣a2=﹣bc,
∴由余弦定理可得:cosA= = =﹣ ,
∴由A∈(0,π),可得:A=
(2)解:∵A= ,可得:C= ﹣B,
∴cosB+cosC=cosB+cos( ﹣B)= cosB+ sinB= sin(B+ ),
∵B∈(0, ),可得:B+ ∈( , ),
∴cosB+cosC= sin(B+ )∈( , ]
【解析】(1)由正弦定理化简已知等式可得:b2+c2﹣a2=﹣bc,由余弦定理可求cosA,结合A∈(0,π),可得A的值.(2)由(1)得:C= ﹣B,利用三角函数恒等变换的应用化简可求cosB+cosC= sin(B+ ),由B∈(0, ),可得:B+ ∈( , ),由正弦函数的图象和性质即可得解.
【考点精析】掌握正弦定理的定义和余弦定理的定义是解答本题的根本,需要知道正弦定理:;余弦定理:;;.
【题目】为了研究家用轿车在高速公路上的车速情况,交通部门随机对50名家用轿车驾驶员进行调查,得到其在高速公路上行驶时的平均车速情况为:在30名男性驾驶员中,平均车速超过100km/h的有20人,不超过100km/h的有10人.在20名女性驾驶员中,平均车速超过100km/h的有5人,不超过100km/h的有15人.
(Ⅰ)完成下面的列联表,并判断是否有99.5%的把握认为平均车速超过100km/h的人与性别有关;
平均车速超过100km/h人数 | 平均车速不超过100km/h人数 | 合计 | |
男性驾驶员人数 | |||
女性驾驶员人数 | |||
合计 | |||
(Ⅱ)以上述数据样本来估计总体,现从高速公路上行驶的大量家用轿车中随机抽取3辆,记这3辆车中驾驶员为女性且车速不超过100km/h的车辆数为ζ,若每次抽取的结果是相互独立的,求ζ的分布列和数学期望.
参考公式: ,其中n=a+b+c+d.
参考数据:
P(K2≥k0) | 0.150 | 0.100 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |