题目内容
【题目】设圆,圆的半径分别为1,2,且两圆外切于点,点,分别是圆,圆上的两动点,则的取值范围是( )
A.B.
C.D.
【答案】C
【解析】
连接分别与两圆交于,连,延长交圆与,连,可得,
,从而有,先固定,根据向量数量积的定义,求出在上投影的最大值和最小值,再利用的范围,即可求解.
连接分别与两圆交于,又两圆外切于点,
三点共线,连,延长交圆与,连,
分别为圆,圆的直径,
,
又,,
设为中点,连,
先固定,根据向量数量积的定义,
当在同向投影最大值时为与平行的圆切线的切点,
记为图中的点,此时在投影
,
当且仅当,等号成立,
同理当在投影最小(在反向上)时,
为与平行的圆切线的切点,
记为图中的点,此时在投影,
,
当且仅当时,等号成立,
,
所以的数量积取值范围是.
故选:C.
练习册系列答案
相关题目
【题目】2018年反映社会现实的电影《我不是药神》引起了很大的轰动,治疗特种病的创新药研发成了当务之急.为此,某药企加大了研发投入,市场上治疗一类慢性病的特效药品的研发费用(百万元)和销量(万盒)的统计数据如下:
研发费用(百万元) | 2 | 3 | 6 | 10 | 13 | 15 | 18 | 21 |
销量(万盒) | 1 | 1 | 2 | 2.5 | 3.5 | 3.5 | 4.5 | 6 |
(1)求与的相关系数精确到0.01,并判断与的关系是否可用线性回归方程模型拟合?(规定:时,可用线性回归方程模型拟合);
(2)该药企准备生产药品的三类不同的剂型,,,并对其进行两次检测,当第一次检测合格后,才能进行第二次检测.第一次检测时,三类剂型,,合格的概率分别为,,,第二次检测时,三类剂型,,合格的概率分别为,,.两次检测过程相互独立,设经过两次检测后,,三类剂型合格的种类数为,求的数学期望.
附:(1)相关系数
(2),,,.