题目内容
【题目】如图所示,四边形ABCD与BDEF均为菱形,,且.
求证:平面BDEF;
求直线AD与平面ABF所成角的正弦值.
【答案】(1)证明见解析.
(2) .
【解析】
分析:(1))设与相交于点,连接,由菱形的性质可得,由等腰三角形的性质可得,利用线面垂直的判定定理可得结果;(2)先证明平面.
可得,,两两垂直,以,,建立空间直角坐标系,求出,利用向量垂直数量积为零列方程组求出平面的法向量,由空间向量夹角余弦公式可得结果.
详解:(1)设与相交于点,连接,
∵四边形为菱形,∴,且为中点,
∵,∴,
又,∴平面.
(2)连接,∵四边形为菱形,且,∴为等边三角形,
∵为中点,∴,又,∴平面.
∵,,两两垂直,∴建立空间直角坐标系,如图所示,
设,∵四边形为菱形,,∴,.
∵为等边三角形,∴.
∴,,,,
∴,,.
设平面的法向量为,则,
取,得.设直线与平面所成角为,
则.
练习册系列答案
相关题目