题目内容

【题目】如图所示,在直四棱柱ABCD﹣A1B1C1D1中,DB=BC,DB⊥AC,点M是棱BB1上一点.
(1)求证:B1D1∥面A1BD;
(2)求证:MD⊥AC;
(3)试确定点M的位置,使得平面DMC1⊥平面CC1D1D.

【答案】解:(1)证明:由直四棱柱,得BB1∥DD1且BB1=DD1 , 所以BB1D1D是平行四边形,
所以B1D1∥BD.
而BD平面A1BD,B1D1平面A1BD,
所以B1D1∥平面A1BD.
(2)证明:因为BB1⊥面ABCD,AC面ABCD,所以BB1⊥AC,
又因为BD⊥AC,且BD∩BB1=B,
所以AC⊥面BB1D,
而MD面BB1D,所以MD⊥AC.
(3)当点M为棱BB1的中点时,平面DMC1⊥平面CC1D1D
取DC的中点N,D1C1的中点N1 , 连接NN1交DC1于O,连接OM.
因为N是DC中点,BD=BC,所以BN⊥DC;又因为DC是面ABCD与面DCC1D1的交线,而面ABCD⊥面DCC1D1
所以BN⊥面DCC1D1
又可证得,O是NN1的中点,所以BM∥ON且BM=ON,即BMON是平行四边形,所以BN∥OM,所以OM⊥平面CC1D1D,因为OM面DMC1 , 所以平面DMC1⊥平面CC1D1D.

【解析】(1)在平面A1BD内找到和B1D1平行的直线BD即可.利用线线平行来推线面平行.
(2)先利用条件BB1⊥AC和BD⊥AC证得AC⊥面BB1D,再证明MD⊥AC即可.
(3)因为棱BB1上最特殊的点是中点,所以先看中点.取DC的中点N,D1C1的中点N1 , 连接NN1交DC1于O,BN⊥DC面ABCD⊥面DCC1D1
BN⊥面DCC1D1 . 而又可证得BN∥OM,所以可得OM⊥平面CC1D1D平面DMC1⊥平面CC1D1D.
【考点精析】关于本题考查的直线与平面垂直的判定和平面与平面垂直的判定,需要了解一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直;注意点:a)定理中的“两条相交直线”这一条件不可忽视;b)定理体现了“直线与平面垂直”与“直线与直线垂直”互相转化的数学思想;一个平面过另一个平面的垂线,则这两个平面垂直才能得出正确答案.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网