题目内容
【题目】已知圆锥曲线C经过定点P(3,),它的一个焦点为F(1,0),对应于该焦点的准线为x=-1,斜率为2的直线交圆锥曲线C于A、B两点,且 AB =,求圆锥曲线C和直线的方程。
【答案】圆锥曲线C的方程为y2=4x,直线的方程为y=2x-4.
【解析】
根据焦点和准线判断出曲线为抛物线,由此写出抛物线的方程.设出直线的方程斜截式,利用弦长公式和弦长列方程,解方程求得直线的截距.由此求得直线的方程.
由于曲线的焦点对应的数量是,而准线对应的数量是,故猜想曲线是抛物线,根据,求得,故抛物线的方程是,将代入得,符合题意,故曲线的方程是.由于直线的斜率为,故可设直线的方程为,代入抛物线方程并化简得,故,所以,解得,故直线的方程是.
【题目】某高校在2012年的自主招生考试成绩中随机抽取100名中学生的笔试成绩,按成绩分组,得到的频率分布表如下所示.
组号 | 分组 | 频数 | 频率 |
第1组 | [160,165) | 5 | 0.050 |
第2组 | [165,170) | ① | 0.350 |
第3组 | [170,175) | 30 | ② |
第4组 | [175,180) | 20 | 0.200 |
第5组 | [180,185) | 10 | 0.100 |
合计 | 100 | 1.00 |
(1)请先求出频率分布表中①、②位置的相应数据,再完成频率分布直方图,并从频率分布直方图中求出中位数(中位数保留整数);
(2)为了能选拔出最优秀的学生,高校决定在笔试成绩高的第3、4、5组中用分层抽样抽取6名学生进入第二轮面试,从这6名学生中随机抽取2名学生接受A考官进行面试,求:第4组至少有一名学生被考官A面试的概率.
【题目】某学生对其亲属30人的饮食习惯进行了一次调查,并用下图所示的茎叶图表示30人的饮食指数.(说明:图中饮食指数低于70的人,饮食以蔬菜为主;饮食指数高于70的人,饮食以肉类为主)
(1)根据以上数据完成下面的2×2列联表:
主食 蔬菜 | 主食 肉类 | 总计 | |
50岁以下 | |||
50岁以上 | |||
总计 |
(2)能否在犯错误的概率不超过0.010的前提下认为“其亲属的饮食习惯与年龄有关”?并写出简要分析.
附参考公式: