题目内容
【题目】已知f(x)是定义在(0,+∞)上的单调函数,且对任意的x∈(0,+∞),都有f[f(x)﹣log2x]=3,则方程f(x)﹣f′(x)=2的解所在的区间是( )
A.(0, )
B.( ,1)
C.(1,2)
D.(2,3)
【答案】C
【解析】解:根据题意,对任意的x∈(0,+∞),都有f[f(x)﹣log2x]=3, 又由f(x)是定义在(0,+∞)上的单调函数,
则f(x)﹣log2x为定值,
设t=f(x)﹣log2x,则f(x)=log2x+t,
又由f(t)=3,即log2t+t=3,
解可得,t=2;
则f(x)=log2x+2,f′(x)= ,
将f(x)=log2x+2,f′(x)= 代入f(x)﹣f′(x)=2,
可得log2x+2﹣ =2,
即log2x﹣ =0,
令h(x)=log2x﹣ ,
分析易得h(1)=﹣ <0,h(2)=1﹣ >0,
则h(x)=log2x﹣ 的零点在(1,2)之间,
则方程log2x﹣ =0,即f(x)﹣f′(x)=2的根在(1,2)上,
故选C.
【题目】随着国家二孩政策的全面放开,为了调查一线城市和非一线城市的二孩生育意愿,某机构用简单随机抽样方法从不同地区调查了100位育龄妇女,结果如下表.
非一线城市 | 一线城市 | 总计 | |
愿生 | 45 | 20 | 65 |
不愿生 | 13 | 22 | 35 |
总计 | 58 | 42 | 100 |
附表:
由算得,,
参照附表,得到的正确结论是
A. 在犯错误的概率不超过0.1%的前提下,认为“生育意愿与城市级别有关”
B. 在犯错误的概率不超过0.1%的前提下,认为“生育意愿与城市级别无关”
C. 有99%以上的把握认为“生育意愿与城市级别有关”
D. 有99%以上的把握认为“生育意愿与城市级别无关”
【题目】某兴趣小组欲研究某地区昼夜温差大小与患感冒就诊人数之间的关系,他们分别到气象局与某医院抄录了1到5月份每月10号的昼夜温差情况与因患感冒而就诊的人数,得到如下资料:
日期 | 1月10日 | 2月10日 | 3月10日 | 4月10日 | 5月10日 |
昼夜温差 | 8 | 10 | 13 | 12 | 9 |
就诊人数(个) | 18 | 25 | 28 | 26 | 17 |
该兴趣小组确定的研究方案是:先从这5组数据中选取一组,用剩下的4组数据求线性回归方程,再用选取的一组数据进行检验.
(1)若选取的是1月的一组数据,请根据2至5月份的数据.求出关于的线性回归方程.
(2)若由线性回归方程得到的估计数据与所选出的检验数据的误差不超过2,则认为得到的线性回归方程是理想的,试判断该小组所得的线性回归方程是否理想?如果不理想,请说明理由,如果理想,试预测昼夜温差为时,因感冒而就诊的人数约为多少?
参考公式:, .