题目内容
【题目】追求人类与生存环境的和谐发展是中国特色社会主义生态文明的价值取向.为了改善空气质量,某城市环保局随机抽取了一年内100天的空气质量指数(AQI)的检测数据,结果统计如表:
AQI | ||||||
空气质量 | 优 | 良 | 轻度污染 | 中度污染 | 重度污染 | 重度污染 |
天数 | 6 | 14 | 18 | 27 | 25 | 10 |
(1)从空气质量指数属于[0,50],(50,100]的天数中任取3天,求这3天中空气质量至少有2天为优的概率;
(2)已知某企业每天因空气质量造成的经济损失y(单位:元)与空气质量指数x的关系式为,假设该企业所在地7月与8月每天空气质量为优、良、轻度污染、中度污染、重度污染、严重污染的概率分别为.9月每天的空气质量对应的概率以表中100天的空气质量的频率代替.
(i)记该企业9月每天因空气质量造成的经济损失为X元,求X的分布列;
(ii)试问该企业7月、8月、9月这三个月因气质量造成的经济损失总额的数学期望是否会超过2.88万元?说明你的理由.
【答案】(1);(2)(i)详见解析;(ii)会超过;详见解析
【解析】
(1)利用组合进行计算以及概率表示,可得结果.
(2)(i)写出X所有可能取值,并计算相对应的概率,列出表格可得结果.
(ii)由(i)的条件结合7月与8月空气质量所对应的概率,可得7月与8月经济损失的期望和,最后7月、8月、9月经济损失总额的数学期望与2.88万元比较,可得结果.
(1)设ξ为选取的3天中空气质量为优的天数,
则P(ξ=2),P(ξ=3),
则这3天中空气质量至少有2天为优的概率
为;
(2)(i),
,
,
X的分布列如下:
X | 0 | 220 | 1480 |
P |
(ii)由(i)可得:
E(X)=02201480302(元),
故该企业9月的经济损失的数学期望为30E(X),
即30E(X)=9060元,
设7月、8月每天因空气质量造成的经济损失为Y元,
可得:,
,,
E(Y)=02201480320(元),
所以该企业7月、8月这两个月因空气质量造成
经济损失总额的数学期望为320×(31+31)=19840(元),
由19840+9060=28900>28800,
即7月、8月、9月这三个月因空气质量造成
经济损失总额的数学期望会超过2.88万元.