题目内容
【题目】已知椭圆的左焦点为,右顶点为,上顶点为,,(为坐标原点).
(1)求椭圆的方程;
(2)定义:曲线在点处的切线方程为.若抛物线上存在点(不与原点重合)处的切线交椭圆于、两点,线段的中点为.直线与过点且平行于轴的直线的交点为,证明:点必在定直线上.
【答案】(1);(2)见解析.
【解析】
(1)由得出,再由得出,求出、的值,从而得出椭圆的标准方程;
(2)设点的坐标为,根据中定义得出直线的方程,并设点、,,将直线的方程与椭圆的方程联立,列出韦达定理,利用中点坐标公式求出点的坐标,得出直线的方程与的方程联立,求出点的坐标,可得出点所在的定直线的方程.
(1)由,可知,即.
,,,可得,联立.
得,则,所以,
所以椭圆的方程为;
(2)设点,则由定义可知,过抛物线上任一点处的切线方程为,所以.
设、,.
联立方程组,消去,得.
由,得,解得.
因为,
所以,从而,
所以,所以直线的方程为.
而过点且平行于轴的直线方程为,
联立方程,解得,所以点在定直线上.
【题目】甲、乙两台机床同时生产一种零件,其质量按测试指标划分:指标大于或等于100为优品,大于等于90且小于100为合格品,小于90为次品,现随机抽取这两台机床生产的零件各100件进行检测,检测结果统计如下:
测试指标 | [85,90) | [90,95) | [95,100) | [100,105) | [105,110) |
甲机床 | 8 | 12 | 40 | 32 | 8 |
乙机床 | 7 | 18 | 40 | 29 | 6 |
(1)试分别估计甲机床、乙机床生产的零件为优品的概率;
(2)甲机床生产1件零件,若是优品可盈利160元,合格品可盈利100元,次品则亏损20元,假设甲机床某天生产50件零件,请估计甲机床该天的利润(单位:元);
(3)从甲、乙机床生产的零件指标在[90,95)内的零件中,采用分层抽样的方法抽取5件,从这5件中任意抽取2件进行质量分析,求这2件都是乙机床生产的概率.