题目内容
【题目】已知中心为坐标原点,焦点在轴上的椭圆的焦距为4,且椭圆过点.
(1)求椭圆的方程;
(2)若过点的直线与椭圆交于,两点,,求直线的方程.
【答案】(1);(2).
【解析】
(1)方法一:设椭圆方程,由2c=4,则c=2,求得焦点坐标,利用两点之间的距离公式,即可求得a的值,求得b的值,求得椭圆方程;方法二:将M点坐标代入椭圆方程,即可求得a和b的值,求得椭圆方程;(2)设直线l的方程x=my+1,代入椭圆方程,利用韦达定理及向量的坐标运算,即可求得m的值,求得直线l的方程.
(1)方法一:设椭圆的标准方程:(a>b>0),2c=4,c=2,
则焦点坐标为F1(2,0),F2(-2,0),
则|PF1|+|PF2|=2a,则22a,则a,
b2=a2﹣c2=6﹣4=2,
∴椭圆的标准方程:;
方法二:设椭圆的标准方程:(a>b>0),2c=4,c=2,b2=a2﹣c2=a2﹣4,
将M.代入椭圆方程:.解得:a2=6,b2=2,
∴椭圆的标准方程:;
(2))当直线l的斜率为0时,不合题意.
当直线l的斜率不为0,设直线l的方程x=my+1,设A(x1,y1),B(x2,y2),
则,整理得:(m2+3)x2+2my﹣5=0,y1+y2,,
由2,则(1,﹣)=2(,),则=﹣2,
则+=﹣,则,由=﹣22,则,则5,
解得:=5,则=±,
∴直线l的方程为:..
【题目】某工厂的某车间共有位工人,其中的人爱好运动。经体检调查,这位工人的健康指数(百分制)如下茎叶图所示。体检评价标准指出:健康指数不低于者为“身体状况好”,健康指数低于者为“身体状况一般”。
(1)根据以上资料完成下面的列联表,并判断有多大把握认为“身体状况好与爱好运动有关系”?
身体状况好 | 身体状况一般 | 总计 | |
爱好运动 | |||
不爱好运动 | |||
总计 |
(2)现将位工人的健康指数分为如下组:,,,,,其频率分布直方图如图所示。计算该车间中工人的健康指数的平均数,由茎叶图得到真实值记为,由频率分布直方图得到估计值记为,求与的误差值;
(3)以该车间的样本数据来估计该厂的总体数据,若从该厂健康指数不低于者中任选人,设表示爱好运动的人数,求的数学期望。
附:。
【题目】从某校随机抽取100名学生,获得了他们一周课外阅读时间(单位:小时)的数据,整理得到数据分组及频数分布表如下,从该校随机选取一名学生,则估计这名学生该周课外阅读时间少于12小时的概率为__________.
组号 | 分组 | 频数 |
1 | [0,2) | 6 |
2 | [2,4) | 8 |
3 | [4,6) | 17 |
4 | [6,8) | 22 |
5 | [8,10) | 25 |
6 | [10,12) | 12 |
7 | [12,14) | 6 |
8 | [14,16) | 2 |
9 | [16,18) | 2 |
合计 | 100 |
【题目】小明某天偶然发现班上男同学比女同学更喜欢做几何题,为了验证这一现象是否具有普遍性,他决定在学校开展调查研究:他在全校3000名同学中随机抽取了50名,给这50名同学同等难度的几何题和代数题各一道,让同学们自由选择其中一道题作答,选题人数如下表所示,但因不小心将部分数据损毁,只是记得女生选择几何题的频率是.
几何题 | 代数题 | 合计 | |
男同学 | 22 | 8 | 30 |
女同学 | |||
合计 |
(1)根据题目信息补全上表;
(2)能否根据这个调查数据判断有的把握认为选代数题还是几何题与性别有关?
参考数据和公式:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | |
2.072 | 2.706 | 3.841 | p>5.024 | 6.635 | 7.879 |
,其中.
【题目】平顶山市公安局交警支队依据《中华人民共和国道路交通安全法》第条规定:所有主干道路凡机动车途经十字口或斑马线,无论转弯或者直行,遇有行人过马路,必须礼让行人,违反者将被处以元罚款,记分的行政处罚.如表是本市一主干路段监控设备所抓拍的个月内,机动车驾驶员不“礼让斑马线”行为统计数据:
月份 | |||||
违章驾驶员人数 |
(Ⅰ)请利用所给数据求违章人数与月份之间的回归直线方程;
(Ⅱ)预测该路段月份的不“礼让斑马线”违章驾驶员人数.
参考公式:,.