ÌâÄ¿ÄÚÈÝ

8£®ÒÑÖªÖ±Ïßl£º$\left\{\begin{array}{l}{x=5+\frac{\sqrt{3}}{2}t}\\{y=\sqrt{3}+\frac{1}{2}t}\end{array}\right.$£¨tΪ²ÎÊý£©£®ÒÔ×ø±êÔ­µãΪ¼«µã£¬xÖáµÄÕý°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£¬ÇúÏßCµÄ×ø±ê·½³ÌΪ¦Ñ=2cos¦È£®
£¨1£©½«ÇúÏßCµÄ¼«×ø±ê·½³Ì»¯ÎªÖ±×ø±ê·½³Ì£»
£¨2£©ÉèµãMµÄÖ±½Ç×ø±êΪ£¨5£¬$\sqrt{3}$£©£¬Ö±ÏßlÓëÇúÏßCµÄ½»µãΪA£¬B£¬Çó|MA|•|MB|µÄÖµ£®

·ÖÎö £¨1£©ÇúÏߵļ«×ø±ê·½³Ì¼´¦Ñ2=2¦Ñcos¦È£¬¸ù¾Ý¼«×ø±êºÍÖ±½Ç×ø±êµÄ»¥»¯¹«Ê½µÃx2+y2=2x£¬¼´µÃËüµÄÖ±½Ç×ø±ê·½³Ì£»
£¨2£©Ö±ÏßlµÄ·½³Ì»¯ÎªÆÕͨ·½³Ì£¬ÀûÓÃÇиîÏ߶¨Àí¿ÉµÃ½áÂÛ£®

½â´ð ½â£º£¨1£©¡ß¦Ñ=2cos¦È£¬¡à¦Ñ2=2¦Ñcos¦È£¬¡àx2+y2=2x£¬¹ÊËüµÄÖ±½Ç×ø±ê·½³ÌΪ£¨x-1£©2+y2=1£»
£¨2£©Ö±Ïßl£º$\left\{\begin{array}{l}{x=5+\frac{\sqrt{3}}{2}t}\\{y=\sqrt{3}+\frac{1}{2}t}\end{array}\right.$£¨tΪ²ÎÊý£©£¬ÆÕͨ·½³ÌΪ$y=\frac{\sqrt{3}}{3}x-\frac{2\sqrt{3}}{3}$£¬£¨5£¬$\sqrt{3}$£©ÔÚÖ±ÏßlÉÏ£¬
¹ýµãM×÷Ô²µÄÇÐÏߣ¬ÇеãΪT£¬Ôò|MT|2=£¨5-1£©2+3-1=18£¬
ÓÉÇиîÏ߶¨Àí£¬¿ÉµÃ|MT|2=|MA|•|MB|=18£®

µãÆÀ ±¾ÌâÖ÷Òª¿¼²é°Ñ¼«×ø±ê·½³Ì»¯ÎªÖ±½Ç×ø±ê·½³ÌµÄ·½·¨£¬ÊôÓÚ»ù´¡Ì⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø