ÌâÄ¿ÄÚÈÝ
8£®ÒÑÖªÖ±Ïßl£º$\left\{\begin{array}{l}{x=5+\frac{\sqrt{3}}{2}t}\\{y=\sqrt{3}+\frac{1}{2}t}\end{array}\right.$£¨tΪ²ÎÊý£©£®ÒÔ×ø±êÔµãΪ¼«µã£¬xÖáµÄÕý°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£¬ÇúÏßCµÄ×ø±ê·½³ÌΪ¦Ñ=2cos¦È£®£¨1£©½«ÇúÏßCµÄ¼«×ø±ê·½³Ì»¯ÎªÖ±×ø±ê·½³Ì£»
£¨2£©ÉèµãMµÄÖ±½Ç×ø±êΪ£¨5£¬$\sqrt{3}$£©£¬Ö±ÏßlÓëÇúÏßCµÄ½»µãΪA£¬B£¬Çó|MA|•|MB|µÄÖµ£®
·ÖÎö £¨1£©ÇúÏߵļ«×ø±ê·½³Ì¼´¦Ñ2=2¦Ñcos¦È£¬¸ù¾Ý¼«×ø±êºÍÖ±½Ç×ø±êµÄ»¥»¯¹«Ê½µÃx2+y2=2x£¬¼´µÃËüµÄÖ±½Ç×ø±ê·½³Ì£»
£¨2£©Ö±ÏßlµÄ·½³Ì»¯ÎªÆÕͨ·½³Ì£¬ÀûÓÃÇиîÏ߶¨Àí¿ÉµÃ½áÂÛ£®
½â´ð ½â£º£¨1£©¡ß¦Ñ=2cos¦È£¬¡à¦Ñ2=2¦Ñcos¦È£¬¡àx2+y2=2x£¬¹ÊËüµÄÖ±½Ç×ø±ê·½³ÌΪ£¨x-1£©2+y2=1£»
£¨2£©Ö±Ïßl£º$\left\{\begin{array}{l}{x=5+\frac{\sqrt{3}}{2}t}\\{y=\sqrt{3}+\frac{1}{2}t}\end{array}\right.$£¨tΪ²ÎÊý£©£¬ÆÕͨ·½³ÌΪ$y=\frac{\sqrt{3}}{3}x-\frac{2\sqrt{3}}{3}$£¬£¨5£¬$\sqrt{3}$£©ÔÚÖ±ÏßlÉÏ£¬
¹ýµãM×÷Ô²µÄÇÐÏߣ¬ÇеãΪT£¬Ôò|MT|2=£¨5-1£©2+3-1=18£¬
ÓÉÇиîÏ߶¨Àí£¬¿ÉµÃ|MT|2=|MA|•|MB|=18£®
µãÆÀ ±¾ÌâÖ÷Òª¿¼²é°Ñ¼«×ø±ê·½³Ì»¯ÎªÖ±½Ç×ø±ê·½³ÌµÄ·½·¨£¬ÊôÓÚ»ù´¡Ì⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
16£®Ö´ÐÐÈçͼËùʾµÄ³ÌÐò¿òͼ£¬Èç¹ûÊäÈën=3£¬ÔòÊä³öµÄS=£¨¡¡¡¡£©
A£® | $\frac{6}{7}$ | B£® | $\frac{3}{7}$ | C£® | $\frac{8}{9}$ | D£® | $\frac{4}{9}$ |
3£® ij¹¤¼þµÄÈýÊÓͼÈçͼËùʾ£®ÏÖ½«¸Ã¹¤¼þͨ¹ýÇÐÏ÷£¬¼Ó¹¤³ÉÒ»¸öÌå»ý¾¡¿ÉÄÜ´óµÄ³¤·½Ìåй¤¼þ£¬²¢Ê¹Ð¹¤¼þµÄÒ»¸öÃæÂäÔÚÔ¹¤¼þµÄÒ»¸öÃæÄÚ£¬ÔòÔ¹¤¼þ²ÄÁϵÄÀûÓÃÂÊΪ£¨²ÄÁÏÀûÓÃÂÊ=$\frac{й¤¼þµÄÌå»ý}{Ô¹¤¼þµÄÌå»ý}$£©£¨¡¡¡¡£©
A£® | $\frac{8}{9¦Ð}$ | B£® | $\frac{16}{9¦Ð}$ | C£® | $\frac{4£¨\sqrt{2}-1£©^{3}}{¦Ð}$ | D£® | $\frac{12£¨\sqrt{2}-1£©^{3}}{¦Ð}$ |
13£®Èô±äÁ¿x£¬yÂú×ãÔ¼ÊøÌõ¼þ$\left\{\begin{array}{l}{4x+5y¡Ý8}\\{1¡Üx¡Ü3}\\{0¡Üy¡Ü2}\end{array}\right.$£¬Ôòz=3x+2yµÄ×îСֵΪ£¨¡¡¡¡£©
A£® | 4 | B£® | $\frac{23}{5}$ | C£® | 6 | D£® | $\frac{31}{5}$ |