题目内容
【题目】某企业甲,乙两个研发小组,他们研发新产品成功的概率分别为和,现安排甲组研发新产品,乙组研发新产品.设甲,乙两组的研发是相互独立的.
(1)求至少有一种新产品研发成功的概率;
(2)若新产品研发成功,预计企业可获得万元,若新产品研发成功,预计企业可获得利润万元,求该企业可获得利润的分布列和数学期望.
【答案】(1) (2)详见解析
【解析】试题分析:(1)首先设出至少有一种新产品研发成功为事件A,包含情况较多,所以要求该事件的概率,考虑求其对立事件,即没有一种新产品研发成功,根据独立试验同时发生的概率计算方法即可求的对立事件的概率,再利用互为对立事件概率之间的关系,即和为,即可求的相应的概率.
(2)根据题意,研发新产品的结果分为四种情况,利用独立试验同时发生的概率计算方法分别得到每种情况的概率,再根据题意算出此时的利润,即可得到关于利润的分布列,再利用概率与对应的利润成绩之和即可得到数学期望.
(1)解:设至少有一组研发成功的事件为事件且事件为事件的对立事件,则事件为新产品都没有成功,因为甲,乙成功的概率分别为,则,再根据对立事件概率之间的概率公式可得,所以至少一种产品研发成功的概率为.
(2)由题可得设该企业可获得利润为,则的取值有,,,,即,由独立试验同时发生的概率计算公式可得:
; ;
; ;
所以的分布列如下:
则数学期望 .
【题目】某服装店为庆祝开业“三周年”,举行为期六天的促销活动,规定消费达到一定标准的顾客可进行一次抽奖活动,随着抽奖活动的有效开展,第五天该服装店经理对前五天中参加抽奖活动的人数进行统计,表示第天参加抽奖活动的人数,得到统计表格如下:
1 | 2 | 3 | 4 | 5 | |
4 | 6 | 10 | 23 | 22 |
(1)若与具有线性相关关系,请根据上表提供的数据,用最小二乘法求出关于的线性回归方程;
(2)预测第六天的参加抽奖活动的人数(按四舍五入取到整数).
参考公式与参考数据:.