题目内容
【题目】已知点A(﹣1,0),B(1,0),C(0,1),直线y=ax+b(a>0)将△ABC分割为面积相等的两部分,则b的取值范围是( )
A.(0,1)B.C.D.
【答案】B
【解析】
先求得直线y=ax+b(a>0)与x轴的交点为M(,0),由0可得点M在射线OA上.求出直线和BC的交点N的坐标,①若点M和点A重合,求得b;②若点M在点O和点A之间,求得b; ③若点M在点A的左侧,求得b>1.再把以上得到的三个b的范围取并集,可得结果.
由题意可得,三角形ABC的面积为 1,
由于直线y=ax+b(a>0)与x轴的交点为M(,0),
由直线y=ax+b(a>0)将△ABC分割为面积相等的两部分,可得b>0,
故0,故点M在射线OA上.
设直线y=ax+b和BC的交点为N,则由可得点N的坐标为(,).
①若点M和点A重合,如图:
则点N为线段BC的中点,故N(,),
把A、N两点的坐标代入直线y=ax+b,求得a=b.
②若点M在点O和点A之间,如图:
此时b,点N在点B和点C之间,
由题意可得三角形NMB的面积等于,
即,即 ,可得a0,求得 b,
故有b.
③若点M在点A的左侧,
则b,由点M的横坐标1,求得b>a.
设直线y=ax+b和AC的交点为P,则由 求得点P的坐标为(,),
此时,由题意可得,三角形CPN的面积等于,即 (1﹣b)|xN﹣xP|,
即(1﹣b)||,化简可得2(1﹣b)2=|a2﹣1|.
由于此时 b>a>0,0<a<1,∴2(1﹣b)2=|a2﹣1|=1﹣a2 .
两边开方可得 (1﹣b)1,∴1﹣b,化简可得 b>1,
故有1b.
综上可得b的取值范围应是 ,
故选:B.
练习册系列答案
相关题目