题目内容
8.某工业含锰酸性废水的主要成分为MnSO4,另外还存在Fe2+、Fe3+、Al3+等离子.现以该废水为原料,制备高纯的碳酸锰,工业流程如下:(1)加入MnO2的作用是MnO2+2Fe2++4H+=Mn2++2Fe3++2H2O(用离子方程式表示).
(2)下表列出了几种离子生成氢氧化物沉淀时的pH
开始沉淀时的pH | 沉淀完全时的pH | |
Fe3+ | 1.5 | 3.1 |
Fe2+ | 6.5 | 9.7 |
Al3+ | 3.3 | 5.2 |
Mn2+ | 7.8 | 10.4 |
(3)滤渣X的主要成分为Fe(OH)3、Al(OH)3,滤液中的溶质为MnSO4、(NH4)2SO4.
(4)已知反应1中会产生一种气体,则该反应的化学方程式为2NH4HCO3+MnSO4=MnCO3+(NH4)2SO4+CO2↑+H2O.
(5)判断水洗步骤中沉淀已洗净的方法是取最后一次的洗涤液于试管中,加入BaCl2溶液和稀硝酸,若无白色沉淀,说明已洗净.
(6)制得的碳酸锰可用于工业上电解法冶炼金属锰.该生产中需先将碳酸锰溶于强酸,配成电解液,写出该反应的离子方程式MnCO3+2H+=Mn2++CO2↑+H2O.
分析 (1)加入MnO2,做氧化剂,氧化Fe2+;
(2)根据表中数据可知,氢氧化铝完成沉淀的pH为5.2,氢氧化铁完全沉淀的pH为3.7,所以调节pH在5.2,
(3)调节pH在5.2,Fe3+和Al3+均以Fe(OH)3和Al(OH)3沉淀状态存在,滤液中的溶质为MnSO4、(NH4)2SO4;
(4)NH4HCO3与MnSO4生成CO2、MnCO3、(NH4)2SO4和H2O;
(5)MnCO3沉淀中附有SO42-,通过检验沉淀中是否含有SO42-,来确定沉淀洗涤干净与否;
(6)碳酸锰溶于强酸生成Mn2+、CO2和H2O.
解答 解:(1)加入MnO2,做氧化剂,氧化Fe2+,离子方程式为MnO2+2Fe2++4H+=Mn2++2Fe3++2H2O;
故答案为:MnO2+2Fe2++4H+=Mn2++2Fe3++2H2O;
(2)根据表中数据可知,氢氧化铝完成沉淀的pH为5.2,氢氧化铁完全沉淀的pH为3.7,所以调节pH在5.2,
故答案为:5.2;
(3)调节pH在5.2,Fe3+和Al3+均以Fe(OH)3和Al(OH)3沉淀状态存在,即滤渣的成分为:Fe(OH)3、Al(OH)3,滤液中的溶质为MnSO4、(NH4)2SO4;
故答案为:Fe(OH)3、Al(OH)3;MnSO4、(NH4)2SO4;
(4)NH4HCO3与MnSO4生成CO2、MnCO3、(NH4)2SO4和H2O,化学方程式为2NH4HCO3+MnSO4=MnCO3+(NH4)2SO4+CO2↑+H2O;
故答案为:2NH4HCO3+MnSO4=MnCO3+(NH4)2SO4+CO2↑+H2O;
(5)MnCO3沉淀中附有SO42-,通过检验沉淀中是否含有SO42-,来确定沉淀洗涤干净与否,取最后一次的洗涤液于试管中,加入BaCl2溶液和稀硝酸,若无白色沉淀,说明已洗净;
故答案为:取最后一次的洗涤液于试管中,加入BaCl2溶液和稀硝酸,若无白色沉淀,说明已洗净;
(6)碳酸锰溶于强酸生成Mn2+、CO2和H2O,离子方程式为MnCO3+2H+=Mn2++CO2↑+H2O;
故答案为:MnCO3+2H+=Mn2++CO2↑+H2O.
点评 本题考查了铁盐和亚铁盐的相互转变、常见离子的检验方法、难溶电解质的溶解平衡及离子方程式的书写,题目难度中等,解题关键是合理分析题中生成流程及表中离子完全沉淀时的数据的含义,试题培养了学生分析、理解能力及灵活应用所学知识的能力.
(2)已知1.0mol•L-1NaHSO3溶液的pH为3.5,加入氯水,振荡后溶液pH迅速降低.溶液pH降低的原因是HSO3-+Cl2+H2O=3H++SO42-+2Cl-(用离子方程式表示).
(3)在常温常压和光照条件下,N2在催化剂(TiO2)表面与H2O反应,生成1molNH3和O2时的能量变化值为382.5kJ,达到平衡后此反应NH3生成量与温度的实验数据如下表.则该反应的热化学方程式为$\frac{1}{2}$N2(g)+$\frac{3}{2}$H2O(l)?NH3(g)+$\frac{3}{4}$O2(g)△H=+382.5kJ/mol(或2N2(g)+6H2O(l)?4NH3(g)+3O2(g)△H=+1530.0kJ/mol).
T/K | 303 | 313 | 323 |
NH3生成量/(10-1mol) | 4.3 | 5.9 | 6.0 |
2NH4+(aq)+Mg(OH)2(s)?Mg2+(aq)+2NH3•H2O(aq)
写出上述反应的平衡常数表达式K=$\frac{c(M{g}^{2+})•{c}^{2}(N{H}_{3}•{H}_{2}O)}{{c}^{2}(N{{H}_{4}}^{+})}$
某研究性学习小组为探究Mg2+与NH3•H2O反应形成沉淀的情况,设计如下两组实验
实验① | 等体积1mol/L氨水和0.1mol/L MgCl2溶液混合 | 生成白色沉淀 |
实验② | 等体积0.1mol/L氨水和1mol/L MgCl2溶液混合 | 无现象 |
(5)在室温下,化学反应I-(aq)+ClO-(aq)=IO-(aq)+Cl-(aq)的反应物初始浓度、溶液中的氢氧根离子初始浓度及初始速率间的关系如下表所示:
实验编号 | I-的初始浓度 (mol•L-1) | ClO-的初始浓度 (mol•L-1) | OH-的初始浓度 (mol•L-1) | 初始速率v (mol•L-1•s-1) |
1 | 2×10-3 | 1.5×10-3 | 1.00 | 1.8×10-4 |
2 | a | 1.5×10-3 | 1.00 | 3.6×10-4 |
3 | 2×10-3 | 3×10-3 | 2.00 | 1.8×10-4 |
4 | 4×10-3 | 3×10-3 | 1.00 | 7.2×10-4 |
①设计实验2和实验4的目的是探究ClO-对反应速率的影响;
②若实验编号4的其它浓度不变,仅将溶液的酸碱值变更为pH=13,反应的初始速率v=7.2×10-4.
(1)汽车尾气中的NO(g)和CO(g)在一定温度和催化剂的条件下可净化
①已知部分化学键的键能如下(键能指气态原子形成1mol化学键释放的最小能量)
化学键 | N=O | C≡O | C=O | N≡N |
键能(kj/mol) | 632 | 1072 | 750 | 946 |
②若上述反应在绝热、恒荣的密闭体系中进行,并在t1时到达平衡状态,则下列示意图不符合题意的是C(填选项序号)(图中1ω、M、?、z分别表示质量分数、混合气体平均相对分子质量、正反应速率)
(2)尾气中的SO2可先催化氧化生成SO2,再合成硫酸,已知:
2SO${\;}_{{\;}_{2}}$(g)+O2(g)$?_{高温}^{催化剂}$2SO2(g)△H=-196.0kj/mol
①在一定温度的密闭容器中,SO2的转化率时间的变化关系如图2所示,则A点的正反应速率v正(SO2)<B点的正反应速率v正(SO2)(填“大于”、“小于”或“等于”)
②在某温度时,向10L的密闭容器中加入4.0mol SO2和10.0mol O2,反应达到平衡,改变下列条件,再次达到平衡时,能使O2的新平面浓度和原来平衡浓度相同的是BC(填选项序号)
A.在其他条件不变时,减少容器的容积
B.保持温度和容器内压强不变,再充入2.0mol SO2和5.0mol O2
C.保持温度和容器体积不变,再充入SO2和SO3,使之浓度扩大为原来的两倍
(3)用NH3催化还原NO2也可以消除氮氧化物的污染,反应原理为:
NO(g)+NO2(g)+2NH3(g)?2N2(g)+3H2O(g)
对于气体反应,用某组分(B)的平衡压强(pB)代替物质的量浓度(cb)也可以表示平衡常数(记作Kp),则上述反应的K的表达式为$\frac{{p}^{3}({H}_{2}O){p}^{2}({N}_{2})}{p(NO)p(N{O}_{2}){p}^{2}(N{H}_{3})}$
(4)以N2O4为原料采用电解法可制备新型绿色硝化剂N2O3,实验装置如图3所示,电解池中生成N2O3的电极反应式为N2O4+2HNO3-e-=2N2O3+O2↑+2H+
(5)尾气中氢氧化物(NO和NO2)可用尿素[CO(NH2)3]溶液除去,反应生成对大气无污染的气体,1mol尿素能吸收工业尾气中氢氧化物(假设NO、NO2体积比为1:1)的质量为76g.
①加入AgNO3溶液 ②加入NaOH水溶液 ③加热 ④加入蒸馏水 ⑤加稀硝酸至溶液呈酸性 ⑥加入NaOH醇溶液.
A. | ④③①⑤ | B. | ②③⑤① | C. | ④⑥③① | D. | ③⑥⑤① |
已知:
离子 | 开始沉淀pH | 完全沉淀pH |
Fe3+ | 2.1 | 3.2 |
Al3+ | 4.1 | 5.4 |
(1)“酸浸”后得到的残渣中主要含有的物质是SiO2.物质X的化学式为CO2.
(2)“酸浸”时影响铝浸出率的因素可能有(写出两个)盐酸的浓度、反应温度.
(3)为了获得产品Al(OH)3,从煤矸石的盐酸浸取液开始,若只用CaCO3一种试剂,后续操作过程是加入CaCO3调节溶液pH至3.2,过滤洗涤除去Fe(OH)3后,再继续加入CaCO3调节溶液pH到5.4,过滤洗涤得到Al(OH)3.
(4)Al(OH)3可添加到塑料中作阻燃剂的原因是Al(OH)3分解时吸收大量热量且分解生成高熔点的Al2O3.
(5)以Al和MnO2为电极,与NaCl和稀氨水电解质溶液组成一种新型电池,放电时MnO2转化为MnO(OH).该电池反应的化学方程式是Al+3MnO2+3H2O=3MnO(OH)+Al(OH)3.
(6)预处理后的100t煤矸石经上述流程后,得到39t纯度为95%的氢氧化铝产品.则预处理后的100t煤矸石中铝元素的回收率为96.9%.
A. | 10℃20mL3 mol/L的X溶液 | B. | 20℃30mL2 mol/L的X溶液 | ||
C. | 20℃10mL4 mol/L的X溶液 | D. | 10℃20mL2 mol/L的X溶液 |