【题目】如图,在平面直角坐标系中,一次函数y=ax+b的图象与反比例函数y=(k为常数,k≠0)的图象交于二、四象限内的A、B两点,与y轴交于C点.点A的坐标为(m,3),点B与点A关于y=x成轴对称,tan∠AOC=.
(1)求k的值;
(2)直接写出点B的坐标,并求直线AB的解析式;
(3)P是y轴上一点,且S△PBC=2S△AOB,求点P的坐标.
【题目】如图,Rt△ABC中,∠C=90°,∠B=30°,点O在AB上,以点O为圆心,OA为半径的圆与BC相切与点D,与AC相交与点E,若CD=6,则CE=__.
【题目】已知正方形MNOK和正六边形ABCDEF边长均为1,把正方形放在正六边形中,使OK边与AB边重合,如图所示:按下列步骤操作:将正方形在正六边形中绕点B顺时针旋转,使KM边与BC边重合,完成第一次旋转;再绕点C顺时针旋转,使MN边与CD边重合,完成第二次旋转……连续经过六次旋转.在旋转的过程中,当正方形和正六边形的边重合时,点B,M间的距离可能是( )
A. 0.5B. 0.7C. ﹣1D. ﹣1
【题目】如图,△ABC与 △ADE中,∠ACB=∠AED=90°,连接BD、CE,∠EAC=∠DAB.
(1)求证:△ABC ∽△ADE;
(2)求证:△BAD ∽△CAE;
(3)已知BC=4,AC=3,AE=.将△AED绕点A旋转,当点E落在线段CD上时,求 BD的长.
【题目】如图,点M的坐标为,点A在第一象限,轴,垂足为B,.
(1)如果是等腰三角形,求点A的坐标;
(2)设直线MA与y轴交于点N,则是否存在与相似?若存在,请直接写出点A的坐标;若不存在,请说明理由.
【题目】如图,在边长为1的小正方形组成的网格中,△ABC和△DEF的顶点都在格点上,P1,P2,P3,P4,P5是△DEF边上的5个格点,请按要求完成下列各题:
(1)试证明三角形△ABC为直角三角形;
(2)判断△ABC和△DEF是否相似,并说明理由;
(3)画一个三角形,使它的三个顶点为P1,P2,P3,P4,P5中的3个格点并且与△ABC相似(要求:不写作法与证明).
【题目】如图(1),,直线AB和CH交于点O,分别交于D、E两点,已知,,.
(1)尝试探究:在图(1)中,求DB和AD的长;
(2)类比延伸:平移AB使得A与H重合,如图(2)所示,过点D作,若,求线段BF的长;
(3)拓展迁移:如图(3),若的面积是10,点D、E分别位于AB、CA上,,点F在BC上且,,如果的面积和四边形FCED的面积相等,求这个相等的面积.
【题目】将三角形纸片△ABC按如图所示的方式折叠,使点B落在边AC上,记为点B′,折痕为EF.已知AB=AC=8,BC=10,若以点B′,F,C为顶点的三角形与△ABC相似,那么BF的长度是______________.
【题目】如图,四边形ABCD中,AB∥CD,∠B=90°,AB=1,CD=2,BC=m,点P是边BC上一动点,若△PAB与△PCD相似,且满足条件的点P恰有2个,则m的值为_______.
【题目】如图,若果∠1=∠2,那么添加下列任何一个条件:(1),(2),(3)∠B=∠D,(4)∠C=∠AED, 其中能判定△ABC∽△ADE的个数为
A. 1 B. 2 C. 3 D. 4