题目内容
【题目】如图,在平面直角坐标系中,一次函数y=ax+b的图象与反比例函数y=(k为常数,k≠0)的图象交于二、四象限内的A、B两点,与y轴交于C点.点A的坐标为(m,3),点B与点A关于y=x成轴对称,tan∠AOC=.
(1)求k的值;
(2)直接写出点B的坐标,并求直线AB的解析式;
(3)P是y轴上一点,且S△PBC=2S△AOB,求点P的坐标.
【答案】(1)k=﹣3;(2)B(3,﹣1),直线AB的解析式为y=﹣x+2;(3)P点的坐标为(0,)或(0,﹣).
【解析】
(1)作AD⊥y轴于D,根据正切函数,可得AD的长,得到A的坐标,根据待定系数法,可得k的值;
(2)根据题意即可求得B点的坐标,然后根据待定系数法即可求得直线AB的解析式;
(3)先根据S△AOB=S△AOC+S△BOC求得△AOB的面积为4,然后设P(0,t),得出S△PBC=|t﹣2|×3=|t﹣2|,由S△PBC=2S△AOB列出关于t的方程,解得即可.
解:(1)作AD⊥y轴于D,
∵点A的坐标为(m,3),
∴OD=3,
∵tan∠AOC=.
∴,即,
∴AD=1,
∴A(﹣1,3),
∵在反比例函数y=(k为常数,k≠0)的图象上,
∴k=﹣1×3=﹣3;
(2)∵点B与点A关于y=x成轴对称,
∴B(3,﹣1),
∵A、B在一次函数y=ax+b的图象上,
∴,解得,
∴直线AB的解析式为y=﹣x+2;
(3)连接OC,
由直线AB为y=﹣x+2可知,C(0,2),
∵S△AOB=S△AOC+S△BOC=×2×1+×2×3=4,
∵P是y轴上一点,
∴设P(0,t),
∴S△PBC=|t﹣2|×3=|t﹣2|,
∵S△PBC=2S△AOB,
∴|t﹣2|=2×4,
∴t=或t=﹣,
∴P点的坐标为(0,)或(0,﹣).
【题目】为了解某小区居民使用共享单车次数的情况,某研究小组随机采访该小区的10位居民,得到这10位居民一周内使用共享单车的次数统计如下:
使用次数 | 0 | 5 | 10 | 15 | 20 |
人数 | 1 | 1 | 4 | 3 | 1 |
(1)这10位居民一周内使用共享单车次数的中位数是 次,众数是 次.
(2)若小明同学把数据“20”看成了“30”,那么中位数,众数和平均数中不受影响的是 .(填“中位数”,“众数”或“平均数”)
(3)若该小区有2000名居民,试估计该小区居民一周内使用共享单车的总次数.