【题目】(阅读资料)

同学们,我们学过用配方法解一元二次方程,也可用配方法求代数式的最值.

1)求4x2+16x+19的最小值.

解:4x2+16x+194x2+16x+16+34x+22+3

因(x+22大于等于0,所以4x2+16x+19大于等于3,即4x2+16x+19的最小值是3.此时,x=﹣2

2)求﹣m2m+2的最大值

解:﹣m2m+2=﹣(m2+m+2=﹣

大于等于0,所以﹣小于等于0,所以﹣

小于等于,即﹣m2m+2的最大值是,此时,m=﹣

(探索发现)

如图①,是一张直角三角形纸片,∠B90°AB8BC6,小明想从中剪出一个以∠B为内角且面积最大的矩形,经过多次操作发现,当沿着中位线DEEF剪下时,所得的矩形的面积最大.下面给出了未写完的证明,请你阅读下面的证明并写出余下的证明部分,并求出矩形的最大面积与原三角形面积的比值.

解:在AC上任取点E,作EDBCEFAB,得到矩形BDEF.设EFx

易证△AEF∽△ACB,则

请你写出剩余部分

(拓展应用)

如图②,在△ABC中,BCaBC边上的高ADh,矩形PQMN的顶点PN分别在边ABAC上,顶点QM在边BC上,则矩形PQMN面积的最大值为   .(用含ah的代数式表示)

(灵活应用)

如图③,有一块缺角矩形ABCDEAB32BC40AE20CD16,小明从中剪出了一个面积最大的矩形(∠B为所剪出矩形的内角),该矩形的面积为   .(直接写出答案)

(实际应用)

如图④,现有一块四边形的木板余料ABCD,经测量AB70cmBC108cmCD76cm,且∠B=∠C60°,木匠徐师傅从这块余料中裁出了顶点MN在边BC上且面积最大的矩形PQMN,该矩形的面积为   .(直接写出答案)

 0  364444  364452  364458  364462  364468  364470  364474  364480  364482  364488  364494  364498  364500  364504  364510  364512  364518  364522  364524  364528  364530  364534  364536  364538  364539  364540  364542  364543  364544  364546  364548  364552  364554  364558  364560  364564  364570  364572  364578  364582  364584  364588  364594  364600  364602  364608  364612  364614  364620  364624  364630  364638  366461 

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网