【题目】如图1,在△ABC中,AB=AC,∠BAC=60°,D为BC边上一点,(不与点B、C)重合,将线段AD绕点A逆时针旋转60°得到AE,连接EC,则∠ACE的度数是__________,线段AC,CD,CE之间的数量关系是_______________.
(2)2,在△ABC中,AB=AC,∠BAC=90°,D为BC边上一点(不与点B、C重合),将线段AD绕点A逆时针旋转90°得到AE,连接EC,请写出∠ACE的度数及线段AD,BD,CD之间的数量关系,并说明理由.
(3)如图3,在Rt△DBC中,DB=3,DC=5,∠BDC=90°,若点A满足AB=AC,∠BAC=90°,请直接写出线段AD的长度.
【题目】先阅读短文,然后回答短文后面所给出的问题:对于三个数a,b,c的平均数,最小的数都可以符号来表示,我们规定M{a,b,c}表示这三个数的平均数,min{a,b,c}表示这三个数中最小的数,max{a,b,c}表示这三个数中最大的数.例如:M{1,2,3}=,min{1,2,3}=1,max{1,2,3}=3,M{1,2,a}==.
(1)请填空:min{1,3,2}=___________.若x<0,则max{2,(x+1)2+2,x+1}=__________.
(2)若M{2x24x5,72,x2+10x7}=max{10,2x2+4x+12,8},求x的值.
【题目】某校社会实践小组为了测量大雁塔的高度,在地面上C处垂直于地面竖立了高度为2米的标杆CD,此时地面上的点E,标杆的顶端点D,大雁塔的塔尖点B正好在同一直线上,侧得EC=4米,将标杆CD向后移到点G处,此时地面上的点F,标杆的顶端点H,大雁塔的塔尖点B正好在同一直线上(点F,点G,点E,点C与塔底处的点A在同一直线上),这时测得FG=6米,GC=53米,请你根据以上数据,计算大雁塔的高度AB.
【题目】【阅读理解】
某科技公司生产一种电子产品,该产品总成本包括技术成本、制造成本、销售成本三部分。经核算,2016年该产品各部分成本所占比例约为2:a:1,且2016年该产品的技术成本、制造成本分别为400万元、1400万元。
(1)确定a的值,并求2016年产品总成本为多少万元。
(2)为降低总成本,该公司2017年及2018年增加了技术投入,确保这两年技术成本都比前一年增加一个相同的百分数m(m<50%),制造成本在这两年里都比前一年减少一个相同的百分数2m;同时为了扩大销售量,2018年的销售成本将在2016年的基础上提高10%,经过以上变革,预计2018年该产品总成本达到2016年该产品总成本的。求m的值。
【题目】如图,在△ABC中,D、E分别是AC、AB的中点,CF∥AB交ED的延长线于点F,连接AF、CE.
(1)求证:四边形BCEF是平行四边形;
(2)当△ABC满足什么条件时,四边形AECF是菱形.
【题目】为了解某校落实新课改精神的情況,现以该校某班的同学参加课外活动的情况为样本,对其参加“球类”“绘画类”“舞蹈类”“音乐类”“棋类”活动的情况进行调査统计,并绘制了如图所示的统计图.
(1)参加音乐类活动的学生人数为 人,参加球类活动的人数的百分比为 ;
(2)请把条形统计图补充完整;
(3)若该校学生共1600人,那么参棋类活动的大约有多少人?
(4)该班参加舞蹈类活动4位同学中,有1位男生(用E表示)和3位女生(分别F,G,H表示),现准备从中选取两名同学组成舞伴,请用列表或画树状的方法求恰好选中一男一女的概率.
【题目】如图,一次函数y=kx+5(k为常数,且k≠0)的图像与反比例函数y=-的函数交于A、B(4,b)两点.
(1)求一次函数的表达式及A点的坐标;
(2)直接写出一次函数的值大于反比例函数的值时,自变量x的取值范围.
【题目】如图,正方形ABCD和正方形CEFG的边长分别为a和b,BE和DG相交于点H,连接HC,给出下列结论:①BE=DG;②BE⊥DG;③DE2+BG2=2a2+2b2,其中正确的结论是__________.
【题目】如图,Rt△ABC中,∠ACB=90°,AC=9,BC=12,D是AB边的中点,P是BC边上一动点(点P不与B、C重合),若以D、C、P为顶点的三角形与△ABC相似,则线段PC=__________.
【题目】如图,反比例函数y=(k>0)的图像与矩形AOBC的边AC,BC分别交于点E、F,点C的坐标为(8,6),将△CEF沿EF翻折,C点恰好落在OB上的点D处,则k的值为( )
A.B.6C.12D.