【题目】如图,在⊙O中,半径OA与弦BD垂直,点C在⊙O上,∠AOB=80°
(1) 若点C在优弧BD上,求∠ACD的大小
(2) 若点C在劣弧BD上,直接写出∠ACD的大小
【题目】如图①,在矩形ABCD中,AB<AD,对角线AC,BD相交于点O,动点P由点A出发,沿AB-BC→CD向点D运动设点P的运动路程为x,△AOP的面积为y,y与x的函数关系图象如图②所小示,则AD的长为________.
【题目】如图,在△ABC中,AD⊥BC于D,下列条件:(1)∠B+∠DAC=90°;(2)∠B=∠DAC;(3);(4)AB2=BDBC.其中一定能够判定△ABC是直角三角形的有(填序号)_____.
【题目】如图,在平面直角坐标系中,抛物线y=﹣x2+3x+2与y轴交于点A,点B是抛物线的顶点,点C与点A是抛物线上关于对称轴对称的两个点,点D在x轴上运动,则四边形ABCD的两条对角线的长度之和的最小值为_____.
【题目】如图,在平面直角坐标系中,点A的坐标是(10,0),点B的坐标为(8,0),点C,D在以OA为直径的半圆M上,且四边形OCDB是平行四边形,则点C的坐标为______.
【题目】如图,正方形ABCD的边长为2,P为CD的中点,连结AP,过点B作BE⊥AP于点E,延长CE交AD于点F,过点C作CH⊥BE于点G,交AB于点H,连接HF.下列结论正确的是( )
A. CE= B. EF= C. cos∠CEP= D. HF2=EFCF
【题目】如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=12,点D在边BC上,点E在线段AD上,EF⊥AC于点F,EG⊥EF交AB于点G,若EF=EG,则CD的长为( )
A.3.6B.4C.4.8D.5
【题目】如图,已知抛物线与轴交于、两点,,交轴于点,对称轴是直线.
(1)求抛物线的解析式及点的坐标;
(2)连接,是线段上一点,关于直线的对称点正好落在上,求点的坐标;
(3)动点从点出发,以每秒2个单位长度的速度向点运动,过作轴的垂线交抛物线于点,交线段于点.设运动时间为()秒.若与相似,请求出的值.
【题目】如图,已知,以为直径作半圆,半径绕点顺时针旋转得到,点的对应点为,当点与点重合时停止.连接并延长到点,使得,过点作于点,连接,.
(1)______;
(2)如图,当点与点重合时,判断的形状,并说明理由;
(3)如图,当时,求的长;
(4)如图,若点是线段上一点,连接,当与半圆相切时,直接写出直线与的位置关系.
【题目】如图,一次函数的图象与反比例函数的图象交于二、四象限内的两点,与轴交于点,点的坐标为,点的坐标为
(1)求该反比例函数和一次函数的解析式;
(2)连接、,求的面积;
(3)设点在轴上,且满足是直角三角形,直接写出点的坐标.