题目内容
【题目】如图,在△ABC中,AD⊥BC于D,下列条件:(1)∠B+∠DAC=90°;(2)∠B=∠DAC;(3);(4)AB2=BDBC.其中一定能够判定△ABC是直角三角形的有(填序号)_____.
【答案】(2)(3)(4)
【解析】
(1)根据直角三角形中两个锐角互余,即可判定∠BAD=∠CAD,继而可得△ABC是等腰三角形,不能判定△ABC是直角三角形;
(2)利用直角三角形中两个锐角互余的知识,可得∠BAC=90°,则可得△ABC是直角三角形;
(3)由,可得,推出sin∠ACD=sin∠B,即∠ACD=∠B,由此即可判定.
(4)由AB2=BDBC与∠B是公共角,可判定△CBA∽△ABD,△ABD是直角三角形,则可得△ABC是直角三角形.
解:(1)不能,
∵AD⊥BC,
∴∠B+∠BAD=90°,
∵∠B+∠DAC=90°,
∴∠BAD=∠DAC,
∴△ABD≌△ACD(ASA),
∴AB=AC,
∴△ABC是等腰三角形,
∴无法证明△ABC是直角三角形;
(2)能,
∵AD⊥BC,
∴∠B+∠BAD=90°,
∵∠B=∠DAC,
∴∠BAC=∠BAD+∠DAC=∠BAD+∠B=90°;
(3)能,
∵,
∴,
∵AD⊥BC,∴∠ADB=∠ADC=90°,
在Rt△ACD中
sin∠CAD=,
在Rt△ABD中,sin∠B=,
∴sin∠ACD=sin∠B,
∴∠ACD=∠B,
∵∠B+∠BAD=90°,
∴∠CAD+∠BAD=90°,
∴∠BAC=90°,
∴△ABC是直角三角形.
(4)能,
∵能说明△CBA∽△ABD,
又∵△ABD是直角三角形,
∴△ABC一定是直角三角形.
∴一定能够判定△ABC是直角三角形的有(2)(4)(3).
故答案为:(2)(3)(4).
【题目】某水果店以10元/千克的价格购进某种水果进行销售,经过市场调查获得部分数据如下表:
销售价格x(元/千克) | 10 | 13 | 16 | 19 | 22 |
日销售量y(千克) | 100 | 85 | 70 | 55 | 40 |
(1)请根据表中的数据,用所学过的一次函数、二次函数、反比例函数的知识刻画y与x之间的函数关系;
(2)该水果店应该如何确定这批水果的销售价格,才能使日销售利润最大?
(3)若该水果店平均每销售1千克这种水果会损耗a千克,当20≤x≤22时,水果店日获利的最大值为405元,求a的值.