题目内容
【题目】如图,在⊙O中,半径OA与弦BD垂直,点C在⊙O上,∠AOB=80°
(1) 若点C在优弧BD上,求∠ACD的大小
(2) 若点C在劣弧BD上,直接写出∠ACD的大小
【答案】(1)∠ACD=40°;(2)∠ACD=40°或140°.
【解析】
(1)由AO⊥BD,根据垂径定理可得,再利用等弧对等角,以及圆周角定理即可求出结果;
(2)如图所示,点C有两个位置,分别利用圆周角定理的推论和圆周角定理求出即可.
解:(1)∵AO⊥BD,
∴,
∴∠AOB=2∠ACD,
∵∠AOB=80°,
∴∠ACD=40°;
(2)如图,①当点C1在上时,∠AC1D=∠ACD=40°;
②当点C2在上时,∵∠AC2D+∠ACD=180°,∴∠AC2D=140°.
综上所述,∠ACD=40°或140°.
练习册系列答案
相关题目
【题目】某小学三年级到六年级的全体学生参加“礼仪”知识测试,现将有关数据整理后绘制成如下“年级人数统计图”和尚未全部完成的“成绩情况统计表”根据图表中提供的信息,回答下列问题:
成绩 | 100分 | 90分 | 80分 | 70分 | 60分 |
人数 | 21 | 40 | 5 | ||
频率 |
|
(1)测试学生中,成绩为80分的学生人数有___名;众数是___分;中位数是___分;
若该小学三年级到六年级共有1800名学生,则可估计出成绩为70分的学生人数约有多少名?