题目内容
【题目】如图,若二次函数y=ax2+bx+c(a≠0)图象的对称轴为x=1,与y轴交于点C,与x轴交于点A、点B(﹣1,0),则
①二次函数的最大值为a+b+c;
②a﹣b+c<0;
③b2﹣4ac<0;
④当y>0时,﹣1<x<3,其中正确的个数是( )
A. 1 B. 2 C. 3 D. 4
【答案】B
【解析】
直接利用二次函数图象的开口方向以及图象与x轴的交点,进而分别分析得出答案.
①∵二次函数y=ax2+bx+c(a≠0)图象的对称轴为x=1,且开口向下,
∴x=1时,y=a+b+c,即二次函数的最大值为a+b+c,故①正确;
②当x=﹣1时,a﹣b+c=0,故②错误;
③图象与x轴有2个交点,故b2﹣4ac>0,故③错误;
④∵图象的对称轴为x=1,与x轴交于点A、点B(﹣1,0),
∴A(3,0),
故当y>0时,﹣1<x<3,故④正确.
故选B.
练习册系列答案
相关题目